Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kaisa Hakkila is active.

Publication


Featured researches published by Kaisa Hakkila.


Plant Physiology | 2012

The SigB σ Factor Regulates Multiple Salt Acclimation Responses of the Cyanobacterium Synechocystis sp. PCC 6803

Hanna-Leena Nikkinen; Kaisa Hakkila; Liisa Gunnelius; Tuomas Huokko; Maija Pollari; Taina Tyystjärvi

Changing of principal σ factor in RNA polymerase holoenzyme to a group 2 σ factor redirects transcription when cyanobacteria acclimate to suboptimal environmental conditions. The group 2 sigma factor SigB was found to be important for the growth of the cyanobacterium Synechocystis sp. PCC 6803 in high-salt (0.7 m NaCl) stress but not in mild heat stress at 43°C although the expression of the sigB gene was similarly highly, but only transiently up-regulated at both conditions. The SigB factor was found to regulate many salt acclimation processes. The amount of glucosylglycerol-phosphate synthase, a key enzyme in the production of the compatible solute glucosylglycerol, was lower in the inactivation strain ΔsigB than in the control strain. Addition of the compatible solute trehalose almost completely restored the growth of the ΔsigB strain at 0.7 m NaCl. High-salt conditions lowered the chlorophyll and phycobilin contents of the cells while protective carotenoid pigments, especially zeaxanthin and myxoxanthophyll, were up-regulated in the control strain. These carotenoids were up-regulated in the ΔsigCDE strain (SigB is the only functional group 2 σ factor) and down-regulated in the ΔsigB strain under standard conditions. In addition, the HspA heat shock protein was less abundant and more abundant in the ΔsigB and ΔsigCDE strains, respectively, than in the control strain in high-salt conditions. Some cellular responses are common to heat and salt stresses, but pretreatment with mild heat did not protect cells against salt shock although protection against heat shock was evident.


Biochimica et Biophysica Acta | 2014

Oxidative stress and photoinhibition can be separated in the cyanobacterium Synechocystis sp. PCC 6803

Kaisa Hakkila; Taras K. Antal; Ateeq Ur Rehman; Juha Kurkela; Hajime Wada; Imre Vass; Esa Tyystjärvi; Taina Tyystjärvi

Roles of oxidative stress and photoinhibition in high light acclimation were studied using a regulatory mutant of the cyanobacterium Synechocystis sp. PCC 6803. The mutant strain ΔsigCDE contains the stress responsive SigB as the only functional group 2 σ factor. The ∆sigCDE strain grew more slowly than the control strain in methyl-viologen-induced oxidative stress. Furthermore, a fluorescence dye detecting H2O2, hydroxyl and peroxyl radicals and peroxynitrite, produced a stronger signal in ∆sigCDE than in the control strain, and immunological detection of carbonylated residues showed more protein oxidation in ∆sigCDE than in the control strain. These results indicate that ∆sigCDE suffers from oxidative stress in standard conditions. The oxidative stress may be explained by the findings that ∆sigCDE had a low content of glutathione and low amount of Flv3 protein functioning in the Mehler-like reaction. Although ∆sigCDE suffers from oxidative stress, up-regulation of photoprotective carotenoids and Flv4, Sll2018, Flv2 proteins protected PSII against light induced damage by quenching singlet oxygen more efficiently in ∆sigCDE than in the control strain in visible and in UV-A/B light. However, in UV-C light singlet oxygen is not produced and PSII damage occurred similarly in the ∆sigCDE and control strains. According to our results, resistance against the light-induced damage of PSII alone does not lead to high light tolerance of the cells, but in addition efficient protection against oxidative stress would be required.


Antimicrobial Agents and Chemotherapy | 2001

Measurement of Effects of Antibiotics in Bioluminescent Staphylococcus aureus RN4220

Mervi Tenhami; Kaisa Hakkila; Matti Karp

ABSTRACT The spread of antibiotic resistance among pathogenic bacteria is a serious threat to humans and animals. Therefore, unnecessary use should be minimized, and new antimicrobial agents with novel mechanisms of action are needed. We have developed an efficient method for measuring the action of antibiotics which is applied to a gram-positive strain,Staphylococcus aureus RN4220. The method utilizes the firefly luciferase reporter gene coupled to the metal-induciblecadA promoter in a plasmid, pTOO24. Correctly timed induction by micromolar concentrations of antimonite rapidly triggers the luciferase gene transcription and translation. This sensitizes the detection system to the action of antibiotics, and especially for transcriptional and translational inhibitors. We show the results for 11 model antibiotics with the present approach and compare them to an analytical setup with a strain where luciferase expression is under the regulation of a constitutive promoter giving only a report of metabolic inhibition. The measurement of light emission from intact living cells is shown to correlate extremely well (r = 0.99) with the conventional overnight growth inhibition measurement. Four of the antibiotics were within a 20% concentration range and four were within a 60% concentration range of the drugs tested. This approach shortens the assay time needed, and it can be performed in 1 to 4 h, depending on the sensitivity needed. Furthermore, the assay can be automatized for high-throughput screening by the pharmaceutical industry.


Plant and Cell Physiology | 2013

Group 2 Sigma Factor Mutant ΔsigCDE of the Cyanobacterium Synechocystis sp. PCC 6803 Reveals Functionality of Both Carotenoids and Flavodiiron Proteins in Photoprotection of Photosystem II

Kaisa Hakkila; Taras K. Antal; Liisa Gunnelius; Juha Kurkela; H.C.P. Matthijs; Esa Tyystjärvi; Taina Tyystjärvi

Adjustment of gene expression during acclimation to stress conditions, such as bright light, in the cyanobacterium Synechocystis sp. PCC 6803 depends on four group 2 σ factors (SigB, SigC, SigD, SigE). A ΔsigCDE strain containing the stress-responsive SigB as the only functional group 2 σ factor appears twice as resistant to photoinhibition of photosystem II (PSII) as the control strain. Microarray analyses of the ΔsigCDE strain indicated that 77 genes in standard conditions and 79 genes in high light were differently expressed compared with the control strain. Analysis of possible photoprotective mechanisms revealed that high carotenoid content and up-regulation of the photoprotective flavodiiron operon flv4-sll0218-flv2 protected PSII in ΔsigCDE, while up-regulation of pgr5-like, hlipB or isiA genes in the mutant strain did not offer particular protection against photoinhibition. Photoinhibition resistance was lost if ΔsigCDE was grown in high CO2, where carotenoid and Flv4, Sll0218, and Flv2 contents were low. Additionally, photoinhibition resistance of the ΔrpoZ strain (lacking the omega subunit of RNA polymerase), with high carotenoid but low Flv4-Sll0218-Flv2 content, supported the importance of carotenoids in PSII protection. Carotenoids likely protect mainly by quenching of singlet oxygen, but efficient nonphotochemical quenching in ΔsigCDE might offer some additional protection. Comparison of photoinhibition kinetics in control, ΔsigCDE, and ΔrpoZ strains showed that protection by the flavodiiron operon was most efficient during the first minutes of high-light illumination.


Applied and Environmental Microbiology | 2011

Cd-Specific Mutants of Mercury-Sensing Regulatory Protein MerR, Generated by Directed Evolution

Kaisa Hakkila; Pia Nikander; Sini Junttila; Urpo Lamminmäki; Marko Virta

ABSTRACT The mercury-sensing regulatory protein, MerR (Tn21), which regulates mercury resistance operons in Gram-negative bacteria, was subjected to directed evolution in an effort to generate a MerR mutant that responds to Cd but not Hg. Oligonucleotide-directed mutagenesis was used to introduce random mutations into the key metal-binding regions of MerR. The effects of these mutations were assessed using a vector in which MerR controlled the expression of green fluorescent protein (GFP) and luciferase via the mer operator/promoter. An Escherichia coli cell library was screened by fluorescence-activated cell sorting, using a fluorescence-based dual screening strategy that selected for MerR mutants that showed GFP repression when cells were induced with Hg but GFP activation in the presence of Cd. Two Cd-responsive MerR mutants with decreased responses toward Hg were identified through the first mutagenesis/selection round. These mutants were used for a second mutagenesis/selection round, which yielded eight Cd-specific mutants that had no significant response to Hg, Zn, or the other tested metal(loid)s. Seven of the eight Cd-specific MerR mutants showed repressor activities equal to that of wild-type (wt) MerR. These Cd-specific mutants harbored multiple mutations (12 to 22) in MerR, indicating that the alteration of metal specificity with maintenance of repressor function was due to the combined effect of many mutations rather than just a few amino acid changes. The amino acid changes were studied by alignment against the sequences of MerR and other metal-responsive MerR family proteins. The analysis indicated that the generated Cd-specific MerR mutants appear to be unique among the MerR family members characterized to date.


Nucleic Acids Research | 2014

The omega subunit of the RNA polymerase core directs transcription efficiency in cyanobacteria

Liisa Gunnelius; Kaisa Hakkila; Juha Kurkela; Hajime Wada; Esa Tyystjärvi; Taina Tyystjärvi

The eubacterial RNA polymerase core, a transcription machinery performing DNA-dependent RNA polymerization, consists of two α subunits and β, β′ and ω subunits. An additional σ subunit is recruited for promoter recognition and transcription initiation. Cyanobacteria, a group of eubacteria characterized by oxygenic photosynthesis, have a unique composition of the RNA polymerase (RNAP) core due to splitting of the β′ subunit to N-terminal γ and C-terminal β′ subunits. The physiological roles of the small ω subunit of RNAP, encoded by the rpoZ gene, are not yet completely understood in any bacteria. We found that although ω is non-essential in cyanobacteria, it has a major impact on the overall gene expression pattern. In ΔrpoZ strain, recruitment of the primary σ factor into the RNAP holoenzyme is inefficient, which causes downregulation of highly expressed genes and upregulation of many low-expression genes. Especially, genes encoding proteins of photosynthetic carbon concentrating and carbon fixing complexes were down, and the ΔrpoZ mutant showed low light-saturated photosynthetic activity and accumulated photoprotective carotenoids and α-tocopherol. The results indicate that the ω subunit facilitates the association of the primary σ factor with the RNAP core, thereby allowing efficient transcription of highly expressed genes.


Journal of Microbiological Methods | 2003

Monitoring promoter activity in a single bacterial cell by using green and red fluorescent proteins.

Kaisa Hakkila; Mikael Maksimow; Arsi Rosengren; Matti Karp; Marko Virta

We investigated the possibility of monitoring promoter activity with flow cytometry by using green fluorescent protein (GFPmut2) and red fluorescent protein (drFP583) in a single bacterial cell. The drFP583 was used as an intrinsic marker of the bacterial cells, because it was expressed constantly in Escherichia coli MC1061 strain. The GFPmut2 expressed under the control of the Hg(2+) ion inducible mer promoter/operator, was used to study promoter activity. Over 75% of the cells were positive for red and green fluorescence in flow cytometric analysis. The average green fluorescence of the whole population increased from 6.7 to 1700 when the mercury concentration was increased from 0 to 1 x 10(-4) M, while the red fluorescence was unaffected by the mercury concentration. These results show that gfpmut2 and drFP583 could be expressed under different promoters in one bacterial cell and measured independently with a flow cytometer.


Molecular Microbiology | 2016

In vivo recruitment analysis and a mutant strain without any group 2 σ factor reveal roles of different σ factors in cyanobacteria

Satu Koskinen; Kaisa Hakkila; Liisa Gunnelius; Juha Kurkela; Hajime Wada; Taina Tyystjärvi

In eubacteria, replacement of one σ factor in the RNA polymerase (RNAP) holoenzyme by another one changes the transcription pattern. Cyanobacteria are eubacteria characterized by oxygenic photosynthesis, and they typically encode numerous group 2 σ factors that closely resemble the essential primary σ factor. A mutant strain of the model cyanobacterium Synechocystis sp. PCC 6803 without functional group 2 σ factors (named as ΔsigBCDE) could not acclimate to heat, high salt or bright light stress, but in standard conditions ΔsigBCDE grew only 9% slower than the control strain. One‐fifth of the genes in ΔsigBCDE was differently expressed compared with the control strain in standard growth conditions and several physiological changes in photosynthesis, and pigment and lipid compositions were detected. To directly analyze the σ factor content of RNAP holoenzyme in vivo, a His‐tag was added to the γ subunit of RNAP in Synechocystis and RNAPs were collected. The results revealed that all group 2 σ factors were recruited by RNAP in standard conditions, but recruitment of SigB and SigC increased in heat stress, SigD in bright light, SigE in darkness and SigB, SigC and SigE in high salt, explaining the poor acclimation of ΔsigBCDE to these stress conditions.


Plant and Cell Physiology | 2016

Roles of Group 2 Sigma Factors in Acclimation of the Cyanobacterium Synechocystis sp. PCC 6803 to Nitrogen Deficiency

Taras K. Antal; Juha Kurkela; Marjaana Parikainen; Anna Kårlund; Kaisa Hakkila; Esa Tyystjärvi; Taina Tyystjärvi

Acclimation of cyanobacteria to environmental conditions is mainly controlled at the transcriptional level, and σ factors of the RNA polymerase have a central role in this process. The model cyanobacterium Synechocystis sp. PCC 6803 has four non-essential group 2 σ factors (SigB, SigC, SigD and SigE) that regulate global metabolic responses to various adverse environmental conditions. Here we show that although none of the group 2 σ factors is essential for the major metabolic realignments induced by a short period of nitrogen starvation, the quadruple mutant without any group 2 σ factors and triple mutants missing both SigB and SigD grow slowly in BG-11 medium containing only 5% of the nitrate present in standard BG-11. These ΔsigBCDE, ΔsigBCD and ΔsigBDE strains lost PSII activity rapidly in low nitrogen and accumulated less glycogen than the control strain. An abnormally high glycogen content was detected in ΔsigBCE (SigD is active), while the carotenoid content became high in ΔsigCDE (SigB is active), indicating that SigB and SigD regulate the partitioning of carbon skeletons in low nitrogen. Long-term survival and recovery of the cells after nitrogen deficiency was strongly dependent on group 2 σ factors. The quadruple mutant and the ΔsigBDE strain (only SigC is active) recovered more slowly from nitrogen deficiency than the control strain, and ΔsigBCDE in particular lost viability during nitrogen starvation. Nitrogen deficiency-induced changes in the pigment content of the control strain recovered essentially in 1 d in nitrogen-replete medium, but little recovery occurred in ΔsigBCDE and ΔsigBDE.


Biotechnology and Bioengineering | 2011

Developing a compound‐specific receptor for bisphenol a by directed evolution of human estrogen receptor α

Johanna Rajasärkkä; Kaisa Hakkila; Marko Virta

Directed evolution has become a successful approach to alter ligand binding properties of nuclear receptors. In this study, directed evolution was used to generate a mutant human estrogen receptor α library, which was then used to screen for receptors having enhanced responses to the known endocrine‐disrupting chemical, bisphenol A (BPA). A single round of multi‐site mutation was combined with an efficient positive/negative library screening method in which positive growth‐based selection for the desired activity with BPA was combined with flow cytometric removal of cells having undesired activity with the natural ligand, 17β‐estradiol. The screening steps were performed in a Saccharomyces cerevisiae yeast strain containing a genome‐integrated his3‐yEGFP reporter gene fusion construct. A single round of mutation and screening yielded nine mutants with enhanced responses towards BPA but no detectable induction by 17β‐estradiol (up to 90 nM). These BPA‐specific mutant receptors may prove useful in the field of environmental analytics, where they could be used to monitor and evaluate the proportion of BPA in hormonally active samples. Biotechnol. Bioeng. 2011;108: 2526–2534.

Collaboration


Dive into the Kaisa Hakkila's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Marko Virta

University of Helsinki

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge