Kaito Iwayama
University of Tsukuba
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Kaito Iwayama.
Diabetes | 2013
Toshiki Otoda; Toshinari Takamura; Hirofumi Misu; Tsuguhito Ota; Shigeo Murata; Hiroto Hayashi; Hiroaki Takayama; Akihiro Kikuchi; Takehiro Kanamori; Kosuke Robert Shima; Fei Lan; Takashi Takeda; Seiichiro Kurita; Kazuhide Ishikura; Yuki Kita; Kaito Iwayama; Ken-ichiro Kato; Masafumi Uno; Yumie Takeshita; Miyuki Yamamoto; Kunpei Tokuyama; Shoichi Iseki; Keiji Tanaka; Shuichi Kaneko
Chronic endoplasmic reticulum (ER) stress is a major contributor to obesity-induced insulin resistance in the liver. However, the molecular link between obesity and ER stress remains to be identified. Proteasomes are important multicatalytic enzyme complexes that degrade misfolded and oxidized proteins. Here, we report that both mouse models of obesity and diabetes and proteasome activator (PA)28-null mice showed 30–40% reduction in proteasome activity and accumulation of polyubiquitinated proteins in the liver. PA28-null mice also showed hepatic steatosis, decreased hepatic insulin signaling, and increased hepatic glucose production. The link between proteasome dysfunction and hepatic insulin resistance involves ER stress leading to hyperactivation of c-Jun NH2-terminal kinase in the liver. Administration of a chemical chaperone, phenylbutyric acid (PBA), partially rescued the phenotypes of PA28-null mice. To confirm part of the results obtained from in vivo experiments, we pretreated rat hepatoma-derived H4IIEC3 cells with bortezomib, a selective inhibitor of the 26S proteasome. Bortezomib causes ER stress and insulin resistance in vitro—responses that are partly blocked by PBA. Taken together, our data suggest that proteasome dysfunction mediates obesity-induced ER stress, leading to insulin resistance in the liver.
Diabetes | 2014
Fei Lan; Hirofumi Misu; Keita Chikamoto; Hiroaki Takayama; Akihiro Kikuchi; Kensuke Mohri; Noboru Takata; Hiroto Hayashi; Naoto Matsuzawa-Nagata; Yumie Takeshita; Hiroyo Noda; Yukako Matsumoto; Tsuguhito Ota; Toru Nagano; Masatoshi Nakagen; Ken-ichi Miyamoto; Kanako Takatsuki; Toru Seo; Kaito Iwayama; Kunpei Tokuyama; Seiichi Matsugo; Hong Tang; Yoshiro Saito; Satoshi Yamagoe; Shuichi Kaneko; Toshinari Takamura
Recent articles have reported an association between fatty liver disease and systemic insulin resistance in humans, but the causal relationship remains unclear. The liver may contribute to muscle insulin resistance by releasing secretory proteins called hepatokines. Here we demonstrate that leukocyte cell–derived chemotaxin 2 (LECT2), an energy-sensing hepatokine, is a link between obesity and skeletal muscle insulin resistance. Circulating LECT2 positively correlated with the severity of both obesity and insulin resistance in humans. LECT2 expression was negatively regulated by starvation-sensing kinase adenosine monophosphate-activated protein kinase in H4IIEC hepatocytes. Genetic deletion of LECT2 in mice increased insulin sensitivity in the skeletal muscle. Treatment with recombinant LECT2 protein impaired insulin signaling via phosphorylation of Jun NH2-terminal kinase in C2C12 myocytes. These results demonstrate the involvement of LECT2 in glucose metabolism and suggest that LECT2 may be a therapeutic target for obesity-associated insulin resistance.
Endocrinology | 2016
Atsushi Obata; Naoto Kubota; Tetsuya Kubota; Masahiko Iwamoto; Hiroyuki Sato; Yoshitaka Sakurai; Iseki Takamoto; Hisayuki Katsuyama; Yoshiyuki Suzuki; Masanori Fukazawa; Sachiya Ikeda; Kaito Iwayama; Kohjiro Ueki; Takashi Kadowaki
Sodium glucose cotransporter 2 inhibitors have attracted attention as they exert antidiabetic and antiobesity effects. In this study, we investigated the effects of tofogliflozin on glucose homeostasis and its metabolic consequences and clarified the underlying molecular mechanisms. C57BL/6 mice were fed normal chow containing tofogliflozin (0.005%) for 20 weeks or a high-fat diet containing tofogliflozin (0.005%) for 8 weeks ad libitum. In addition, the animals were pair-fed in relation to controls to exclude the influence of increased food intake. Tofogliflozin reduced the body weight gain, mainly because of fat mass reduction associated with a diminished adipocyte size. Glucose tolerance and insulin sensitivity were ameliorated. The serum levels of nonesterified fatty acid and ketone bodies were increased and the respiratory quotient was decreased in the tofogliflozin-treated mice, suggesting the acceleration of lipolysis in the white adipose tissue and hepatic β-oxidation. In fact, the phosphorylation of hormone-sensitive lipase and the adipose triglyceride lipase protein levels in the white adipose tissue as well as the gene expressions related to β-oxidation, such as Cpt1α in the liver, were significantly increased. The hepatic triglyceride contents and the expression levels of lipogenic genes were decreased. Pair-fed mice exhibited almost the same results as mice fed an high-fat diet ad libitum. Moreover, a hyperinsulinemic-euglycemic clamp revealed that tofogliflozin improved insulin resistance by increasing glucose uptake, especially in the skeletal muscle, in pair-fed mice. Taken together, these results suggest tofogliflozin ameliorates insulin resistance and obesity by increasing glucose uptake in skeletal muscle and lipolysis in adipose tissue.
Metabolism-clinical and Experimental | 2013
Kenshiro Shimada; Yuki Yamamoto; Kaito Iwayama; Kazuteru Nakamura; Sachiko Yamaguchi; Masanobu Hibi; Yoshiharu Nabekura
OBJECTIVE Fat oxidation during exercise depends on nutritional state, and exercise performed in the post-absorptive state oxidizes more fat than that performed in the postprandial state. However, the effects of exercise on energy metabolism continue during the post-exercise period, and the difference in fat oxidation during exercise may be compensated for during the post-exercise period. The present study compared the effects of an acute exercise bout in the post-absorptive or postprandial state on 24 h fat oxidation. METHODS Twelve young male athletes stayed twice in a room-size metabolic chamber for 24 h indirect calorimetry in a randomized repeated-measure design. Before or after breakfast, i.e. in the post-absorptive or postprandial state, subjects exercised at 50% VO(2)max for 60 min. RESULTS During the 60 min of exercise, energy expenditure in the two exercise trials were equivalent, but exercise in the post-absorptive state was performed with lower RQ compared with that in the postprandial state (P<0.01). The time of exercise relative to breakfast did not affect 24 h energy expenditure (P>0.5). However, accumulated 24 h fat oxidation was higher (P<0.05) and that of carbohydrate oxidation was lower (P<0.05) when exercise was performed in the post-absorptive state. CONCLUSIONS Compared with exercise performed in the postprandial state, exercise performed in the post-absorptive state oxidized more fat and saved more carbohydrate in the body, without affecting 24 h energy expenditure.
EBioMedicine | 2015
Kaito Iwayama; Reiko Kurihara; Yoshiharu Nabekura; Ryosuke Kawabuchi; Insung Park; Masashi Kobayashi; Hitomi Ogata; Momoko Kayaba; Makoto Satoh
Background As part of the growing lifestyle diversity in modern society, there is wide variation in the time of day individuals choose to exercise. Recent surveys in the US and Japan have reported that on weekdays, more people exercise in the evening, with fewer individuals exercising in the morning or afternoon. Exercise performed in the post-prandial state has little effect on accumulated fat oxidation over 24 h (24-h fat oxidation) when energy intake is matched to energy expenditure (energy-balanced condition). The present study explored the possibility that exercise increases 24-h fat oxidation only when performed in a post-absorptive state, i.e. before breakfast. Methods Indirect calorimetry using a metabolic chamber was performed in 10 young, non-obese men over 24 h. Subjects remained sedentary (control) or performed 60-min exercise before breakfast (morning), after lunch (afternoon), or after dinner (evening) at 50% of VO2max. All trials were designed to be energy balanced over 24 h. Time course of energy and substrate balance relative to the start of calorimetry were estimated from the differences between input (meal consumption) and output (oxidation). Findings Fat oxidation over 24 h was increased only when exercise was performed before breakfast (control, 456 ± 61; morning, 717 ± 64; afternoon, 446 ± 57; and evening, 432 ± 44 kcal/day). Fat oxidation over 24 h was negatively correlated with the magnitude of the transient deficit in energy and carbohydrate. Interpretation Under energy-balanced conditions, 24-h fat oxidation was increased by exercise only when performed before breakfast. Transient carbohydrate deficits, i.e., glycogen depletion, observed after morning exercise may have contributed to increased 24-h fat oxidation.
Journal of Applied Physiology | 2015
Kaito Iwayama; Ryosuke Kawabuchi; Insung Park; Reiko Kurihara; Masashi Kobayashi; Masanobu Hibi; Sachiko Oishi; Koichi Yasunaga; Hitomi Ogata; Yoshiharu Nabekura
Whole body fat oxidation increases during exercise. However, 24-h fat oxidation on a day with exercise often remains similar to that of sedentary day, when energy intake is increased to achieve an energy-balanced condition. The present study aimed to examine a possibility that time of the day when exercise is performed makes differences in 24-h fat oxidation. As a potential mechanism of exercise affecting 24-h fat oxidation, its relation to exercise-induced transient energy deficit was examined. Nine young male endurance athletes underwent three trials of indirect calorimetry using a metabolic chamber, in which they performed a session of 100 min of exercise before breakfast (AM), after lunch (PM), or two sessions of 50 min of exercise before breakfast and after lunch (AM/PM) at 65% of maximal oxygen uptake. Experimental meals were designed to achieve individual energy balance. Twenty-four-hour energy expenditure was similar among the trials, but 24-h fat oxidation was 1,142 ± 97, 809 ± 88, and 608 ± 46 kcal/24 h in descending order of its magnitude for AM, AM/PM, and PM, respectively (P < 0.05). Twenty-four-hour carbohydrate oxidation was 2,558 ± 110, 2,374 ± 114, and 2,062 ± 96 kcal/24 h for PM, AM/PM, and AM, respectively. In spite of energy-balanced condition over 24 h, exercise induced a transient energy deficit, the magnitude of which was negatively correlated with 24-h fat oxidation (r = -0.72, P < 0.01). Similarly, transient carbohydrate deficit after exercise was negatively correlated with 24-h fat oxidation (r = -0.40, P < 0.05). The time of the day when exercise is performed affects 24-h fat oxidation, and the transient energy/carbohydrate deficit after exercise is implied as a factor affecting 24-h fat oxidation.
Environmental Health and Preventive Medicine | 2014
Momoko Kayaba; Kaito Iwayama; Hitomi Ogata; Yumi Seya; Ken Kiyono; Makoto Satoh
Sleep TIB, min 480.0 480.0 TST, min 448.1 ± 3.3 452.9 ± 3.6 NS SE, % 93.4 ± 0.7 94.5 ± 0.8 NS Stage 1, min 49.4 ± 6.0 41.6 ± 4.8 NS Stage 2, min 248.9 ± 12.1 250.7 ± 14.7 NS SWS, min 54.2 ± 8.0 59.6 ± 7.8 NS REM, min 96.9 ± 13.4 103.2 ± 12.8 NS NREM, min 351.2 ± 13.8 349.7 ± 12.9 NS WASO, min 21.1 ± 2.4 18.2 ± 3.2 NS SL, min 8.6 ± 2.8 5.9 ± 1.4 NS RL, min 96.1 ± 12.1 108.2 ± 19.2 NS In the following morning Stage 1 and 2, min 26.0 ± 9.8 6.3 ± 2.7 \0.05
Metabolism-clinical and Experimental | 2017
Momoko Kayaba; Insung Park; Kaito Iwayama; Yumi Seya; Hitomi Ogata; Katsuhiko Yajima; Makoto Satoh
PURPOSE Human sleep is generally consolidated into a single prolonged period, and its metabolic consequence is to impose an extended period of fasting. Changes in sleep stage and homeostatic sleep drive following sleep onset may affect sleeping metabolic rate through cross talk between the mechanisms controlling energy metabolism and sleep. The purpose of this study was to isolate the effects of sleep stage and time after sleep onset on sleeping metabolic rate. METHODS The sleeping metabolic rate of 29 healthy adults was measured using whole room indirect calorimetry, during which polysomnographic recording of sleep was performed. The effects of sleep stage and time after sleep onset on sleeping metabolic rate were evaluated using a semi-parametric regression analysis. A parametric analysis was used for the effect of sleep stage and a non-parametric analysis was used for the effect of time. RESULTS Energy expenditure differed significantly between sleep stages: wake after sleep onset (WASO)>stage 2, slow wave sleep (SWS), and REM; stage 1>stage 2 and SWS; and REM>SWS. Similarly, carbohydrate oxidation differed significantly between sleep stages: WASO > stage 2 and SWS; and stage 1>SWS. Energy expenditure and carbohydrate oxidation decreased during the first half of sleep followed by an increase during the second half of sleep. CONCLUSIONS This study identified characteristic phenotypes in energy expenditure and carbohydrate oxidation indicating that sleeping metabolic rate differs between sleep stages.
PLOS ONE | 2017
Kaito Iwayama; Ryosuke Kawabuchi; Yoshiharu Nabekura; Reiko Kurihara; Insung Park; Masashi Kobayashi; Hitomi Ogata; Momoko Kayaba; Naomi Omi; Makoto Satoh
Background Exercise performed in a postprandial state does not increase 24-h fat oxidation of male and female subjects. Conversely, it has been shown in male subjects that exercise performed in a postabsorptive state increases 24-h fat oxidation compared with that in sedentary control and that with exercise trials performed after breakfast, lunch, or dinner. There is a paucity of study evaluating the effect of exercise performed in a postabsorptive state in female subjects. Method Nine young female subjects participated in indirect calorimetry measurement over 24-h using a room-size metabolic chamber in which subjects remained sedentary or performed 60 min exercise before breakfast at 50% of V˙O2max. Exercise was accompanied by an increase in energy intake to ensure that subjects were in a similar state of energy balance over 24 h for the two trials. Findings Compared with the sedentary condition, exercise performed before breakfast increased 24-h fat oxidation (519 ± 37 vs. 400 ± 41 kcal/day). Time courses of relative energy balance differed between trials with transient negative energy balance observed before breakfast. The lowest values of relative energy balance observed during the 24-h calorimetry, i.e., transient energy deficit, were greater in exercise trials than in sedentary trials. The transient deficit in carbohydrate balance was also observed before breakfast, and magnitude of the deficit was greater in exercise trial compared to that of sedentary trial. Interpretation Under energy-balanced conditions, exercise performed in a post-absorptive state increases 24-h fat oxidation in female subjects. The effect of exercise performed before breakfast can be attributed to nutritional state: a transient deficit in energy and carbohydrate at the end of exercise.
PLOS ONE | 2018
Katsuhiko Yajima; Kaito Iwayama; Hitomi Ogata; Insung Park
The fatty acid composition of the diet has been linked to the prevalence of diabetes and cardiovascular diseases. Compared with monounsaturated fatty acids, saturated fatty acids decrease fat oxidation and diet-induced thermogenesis. A potential limitation of previous studies was the short duration (≦5h) of calorimetry used. The present study compared the effects of a meal rich in saturated and unsaturated fatty acids on 24-h of fat oxidation. Ten males participated in two sessions of indirect calorimetry in a whole-room metabolic chamber. At each session, subjects consumed three meals rich in palm oil (44.3% as saturated, 42.3% as monounsaturated and 13.4% as polyunsaturated fatty acid) or rapeseed oil (11.7% as saturated, 59.3% as monounsaturated and 29.0% as polyunsaturated fatty acid). Fat oxidation over 24-h was significantly higher in the meal rich in rapeseed oil (779 ± 202 kcal/day) than that rich in palm oil (703 ± 158 kcal/day, P < 0.05), although energy expenditure was similar between both meal conditions. Meal rich in unsaturated fatty acids increased the oxidation of exogenous and/or endogenous fat. The results of a long calorimetry period indicate that rapeseed oil offered an advantage toward increased 24-h fat oxidation in healthy young males.