Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kaixin Zhang is active.

Publication


Featured researches published by Kaixin Zhang.


Biosensors and Bioelectronics | 2014

Overoxidized polypyrrole/graphene nanocomposite with good electrochemical performance as novel electrode material for the detection of adenine and guanine.

Yansha Gao; Jingkun Xu; Limin Lu; Liping Wu; Kaixin Zhang; Tao Nie; Xiaofei Zhu; Yao Wu

Most conducting polymer/graphene composites have excellent electrical conductivity. However, the background currents of these composites modified electrodes are much larger. In order to improve the sensitivities of these methods, it is necessary to decrease the background signal. In this paper, porous structure films of overoxidized polypyrrole/graphene (PPyox/GR) have been electrochemically coated onto glassy carbon electrode (GCE) and successfully utilized as an efficient electrode material for the quantitive detection of adenine and guanine, two of the most important components of DNA and RNA. The permselective polymer coatings with low background current could improve the selectivity and sensitivity of microelectrodes for the electropositive purine bases. The GRs into these polymers would further improve sensitivity by increasing the electroactive surface area. The electrochemical sensor can be applied to the quantification of adenine and guanine with a linear range covering 0.06-100 µM and 0.04-100 µM, and a low detection limit of 0.02 μM and 0.01 μM, respectively. More importantly, the proposed method was applied to quantify adenine and guanine in calf thymus DNA with satisfactory results.


Analytica Chimica Acta | 2013

Facile synthesis of the necklace-like graphene oxide-multi-walled carbon nanotube nanohybrid and its application in electrochemical sensing of Azithromycin

Kaixin Zhang; Limin Lu; Yangping Wen; Jingkun Xu; Xuemin Duan; Long Zhang; Dufen Hu; Tao Nie

A novel electrochemical platform was designed for the determination of Azithromycin (Azi), a widely used macrolide antibiotic, by combining the hydrophilic properties of graphene oxide (GO) and the excellent electronic and antifouling properties of multi-walled carbon nanotubes (MWCNTs). Stable MWCNTs aqueous dispersion has been prepared using GO nano-sheets as surfactant and the obtained GO-MWCNTs nanohybrid was characterized by UV-vis spectroscopy, Fourier transform infrared spectroscopy, Raman spectroscopy, transmission electron microscopy and electrochemical impedance spectroscopy, which confirmed that GO nano-sheets were attached onto the wall of MWCNTs to form a necklace-like structure. Electrochemical results obviously reveal that the oxidation peak currents of Azi obtained at the GC electrode modified with GO-MWCNTs hybrid are much higher than those at the MWCNTs/GC, GO/GC and bare GC electrodes. Under optimized conditions, the anodic peak current was linear to the concentration of Azi in the range from 0.1 to 10 μM with the detection limit of 0.07 μM. To further validate its possible application, the proposed method was successfully used for the determination of Azi in pharmaceutical formulations with satisfactory results.


RSC Advances | 2014

Synthesis of novel chiral L-leucine grafted PEDOT derivatives with excellent electrochromic performances

Dufen Hu; Baoyang Lu; Xuemin Duan; Jingkun Xu; Long Zhang; Kaixin Zhang; Shimin Zhang; Shijie Zhen

Two amino acid-functionalized poly(3,4-ethylenedioxythiophene) (PEDOT) derivatives, poly(N-(tert-butoxycarbonyl)-L-leucyl(3,4-ethylenedioxythiophene-2′-yl)methylamide) (PEDOT–Boc–Leu) and poly(L-leucyl(3,4-ethylenedioxythiophene-2′-yl)methylamide) (PEDOT–Leu) were synthesized electrochemically via potentiostatic polymerization of corresponding monomers N-(tert-butoxycarbonyl)L-leucyl(3,4-ethylenedioxythiophene-2′-yl)methylamide (EDOT–Boc–Leu) and L-leucyl(3,4-ethylenedioxythiophene-2′-yl)methylamide (EDOT–Leu), which were synthesized by grafting Boc-L-leucine and L-leucine into a 3,4-ethylenedioxythiophene (EDOT) side chain. The electrochemical behaviors, structural characterization, circular dichroism, spectroscopic properties, surface morphology, electrochromic properties and thermal stabilities of PEDOT–Boc–Leu and PEDOT–Leu films were systematically investigated. These L-leucine grafted PEDOT derivatives displayed excellent reversible redox activities, rough and compact surface, and good thermal stability. The circular dichroism spectra suggested the chirality of these polymers. Importantly, the introduction of the L-leucine group enhanced the electrochromic properties of PEDOT and resulted in high contrast ratios (ΔT% = 49% at 600 nm for PEDOT–Boc–Leu) and high coloration efficiencies (431 cm2 C−1 at 960 nm for PEDOT–Leu). Satisfactory results implied that the obtained polymer films can probably be further developed in various applications, such as electrochromic devices, optical displays and chiral recognition.


RSC Advances | 2015

A label-free electrochemical immunosensor for carcinoembryonic antigen detection on a graphene platform doped with poly(3,4-ethylenedioxythiophene)/Au nanoparticles

Yansha Gao; Jingkun Xu; Limin Lu; Xiaofei Zhu; Wenmin Wang; Taotao Yang; Kaixin Zhang; Yongfang Yu

In this work, a two-step method was developed for the fabrication of a graphene sensing platform doped with poly(3,4-ethylenedioxythiophene)/Au nanoparticles (AuNPs/PEDOT/GR). PEDOT nanorods grown on graphene oxide nanosheets (PEDOT/GO) were firstly synthesized by liquid–liquid interfacial polymerization, followed by the chemical reduction of HAuCl4 by NaBH4. During the reduction process, GO doped in the PEDOT was also reduced to a more conductive form of GR. The obtained AuNPs/PEDOT/GR showed excellent conductivity and large surface area. Thus, a simple and sensitive label-free immunosensor based on AuNPs/PEDOT/GR nanocomposite has been proposed to detect carcinoembryonic antigen (CEA) by measuring the change of electrochemical response before and after the immunoreaction. Under the optimized conditions, the linear range of the proposed immunosensor is estimated to be from 0.0004 to 40 ng mL−1 (R2 = 0.9969) and the detection limit is estimated to be 0.1 pg mL−1 at a signal-to-noise ratio of 3. Moreover, the immunosensor was examined for use in the determination of CEA in real human serum samples with satisfactory results.


Chinese Journal of Polymer Science | 2015

Electrosynthesis and characterization of aminomethyl functionalized PEDOT with electrochromic property

Hui Sun; Baoyang Lu; Dufen Hu; Xuemin Duan; Jingkun Xu; Shijie Zhen; Kaixin Zhang; Xiaofei Zhu; Liqi Dong; Daize Mo

We herein report the electrosynthesis of an aminomethyl functionalized poly(3,4-ethylenedioxythiophene) (PEDOT) derivative, poly(2′-aminomethyl-3,4-ethylenedioxythiophene) (PEDOT-MeNH2), in CH2Cl2-Bu4NPF6 (0.1 mol·L-1) system containing 2% boron trifluoride diethyl etherate (BFEE). The electrochemical behavior, structure characterization, thermal properties and surface morphology of this novel polymer were systematically investigated by cyclic voltammetry (CV), Fourier-transform infrared spectroscopy (FTIR), thermogravimetry (TG) and scanning electron microscopy (SEM), respectively. Electrochemistry results demonstrated that PEDOT-MeNH2 film displayed good redox properties and high electrochemical stability. Besides, PEDOT-MeNH2 films exhibited the electrochromic nature with obvious color changing from purple in the reduced form to blue upon oxidation. By further investigation, kinetic studies revealed that PEDOT-MeNH2 film had decent contrast ratio (41.8%), favorable coloration efficiency (152.1 cm2·C-1), low switching voltages and moderate response time (2.4 s). Satisfactory results implied that the obtained PEDOT-MeNH2 film is a promising optoelectronic material and holds promise for electrochromic devices and display applications.


Chinese Journal of Polymer Science | 2016

Synthesis and characterization of D-/L-methionine grafted PEDOTs for selective recognition of 3,4-dihydroxyphenylalanine enantiomers

Liqi Dong; Dufen Hu; Xuemin Duan; Zhipeng Wang; Kaixin Zhang; Xiaofei Zhu; Hui Sun; Youshan Zhang; Jingkun Xu

Two pairs of amino-acid functionalized poly(3,4-ethylenedioxythiophene) (PEDOT) derivatives, namely, poly(N-(tert-butoxycarbonyl)-L-methionyl (3,4-ethylenedioxythiophene-2’-yl)methylamide) (L-PEDOT-Boc-Met) and poly(N-(tert-butoxycarbonyl)-D-methionyl (3,4-ethylenedioxythiophene-2’-yl)methylamide) (D-PEDOT-Boc-Met); poly(L-methionyl (3,4-ethylenedioxythiophene-2’-yl)methylamide) (L-PEDOT-Met) and poly(D-methionyl (3,4-ethylenedioxythiophene-2’-yl)methylamide) (D-PEDOT-Met) were synthesized via chemical oxidative polymerization of corresponding monomers. The structural characterization, spectroscopic properties and thermal stability of these monomers and polymers were systematically explored by FTIR spectra, Raman spectra, XRD spectra, UV-Vis spectra and thermogravimetric analysis. As chiral electrode materials, these polymers were employed to successfully recognize 3,4-dihydroxyphenylalanine (DOPA) enantiomers by cyclic voltammetry (CV) in sulphuric acid solution. The measurement results reveal that the tendency was hetero-chiral interaction between L-PEDOT-Met/PVA/GCE and D-DOPA, D-PEDOT-Met/PVA/GCE and L-DOPA, respectively. Also, the mechanism of chiral discrimination was discussed. All the results implied that the combination of electrochemical molecular recognition technology and chiral PEDOT materials can be a promising approach for chiral recognition and may open new opportunities for facile, biocompatible, sensitive and robust chiral assays in biochemical applications.


RSC Advances | 2015

Facile fabrication of three-dimensional graphene microspheres using β-cyclodextrin aggregates as substrates and their application for midecamycin sensing

Xiaofei Zhu; Jingkun Xu; Xuemin Duan; Limin Lu; Kaixin Zhang; Yansha Gao; Liqi Dong; Hui Sun

Three-dimensional (3D) graphene (GR) microspheres have been successfully prepared for the first time using a simple, easy and green method using β-cyclodextrin aggregates (β-CDAs) as substrates, which could be easily obtained from concentrated aqueous solutions of β-CD. The 3D GR/β-CDAs composites synthesized were characterized using scanning electron microscopy, transmission electron microscopy, ultraviolet/visible spectroscopy, and Raman spectroscopy. A possible formation mechanism was derived. The as-prepared 3D GR/β-CDAs microspheres provided multidimensional electron transport pathways, and this has been exploited in an electrode material for the electrocatalytic oxidation of midecamycin (MD), a widely used macrolide antibiotic. Electrochemical results indicated that the as-prepared 3D GR/β-CDAs microspheres exhibited a higher electrocatalytic activity towards MD oxidation than two-dimensional (2D) GR or β-CDAs, which could be mainly attributed to the improved electrical properties and large surface area of the composite and the high recognition and enrichment capability of β-CDAs. Under optimal conditions, the peak currents on a 3D GR/β-CDA microsphere modified electrode increased linearly with the concentration of MD in the range 0.07–250 μM. The detection limit of MD reached 20 nM (S/N = 3). The present method is promising for the synthesis of high-performance catalysts for sensors, fuel cells and gas-phase catalysis.


Chinese Chemical Letters | 2015

Electroanalytical method for determination of shikonin based on the enhancement effect of cyclodextrin functionalized carbon nanotubes

Yansha Gao; Liping Wu; Kaixin Zhang; Jingkun Xu; Limin Lu; Xiaofei Zhu; Yao Wu


Journal of Electroanalytical Chemistry | 2014

A facile one-pot strategy for the electrochemical synthesis of poly(3,4-ethylenedioxythiophene)/Zirconia nanocomposite as an effective sensing platform for vitamins B2, B6 and C

Tao Nie; Kaixin Zhang; Jingkun Xu; Limin Lu; Ling Bai


Journal of Electroanalytical Chemistry | 2014

Efficient synthesis of graphene-multiwalled carbon nanotubes nanocomposite and its application in electrochemical sensing of diethylstilbestrol

Xiaofei Zhu; Limin Lu; Xuemin Duan; Kaixin Zhang; Jingkun Xu; Dufen Hu; Hui Sun; Liqi Dong; Yansha Gao; Yao Wu

Collaboration


Dive into the Kaixin Zhang's collaboration.

Top Co-Authors

Avatar

Jingkun Xu

Jiangxi Science and Technology Normal University

View shared research outputs
Top Co-Authors

Avatar

Xiaofei Zhu

Jiangxi Science and Technology Normal University

View shared research outputs
Top Co-Authors

Avatar

Limin Lu

Jiangxi Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Xuemin Duan

Jiangxi Science and Technology Normal University

View shared research outputs
Top Co-Authors

Avatar

Dufen Hu

Jiangxi Science and Technology Normal University

View shared research outputs
Top Co-Authors

Avatar

Liqi Dong

Jiangxi Science and Technology Normal University

View shared research outputs
Top Co-Authors

Avatar

Yansha Gao

Jiangxi Science and Technology Normal University

View shared research outputs
Top Co-Authors

Avatar

Hui Sun

Jiangxi Science and Technology Normal University

View shared research outputs
Top Co-Authors

Avatar

Long Zhang

Jiangxi Science and Technology Normal University

View shared research outputs
Top Co-Authors

Avatar

Shijie Zhen

Jiangxi Science and Technology Normal University

View shared research outputs
Researchain Logo
Decentralizing Knowledge