Kaiyi Li
Baylor College of Medicine
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Kaiyi Li.
Nature Cell Biology | 2009
Guang Peng; Eun Kyoung Yim; Hui Dai; Andrew P. Jackson; Ineke van der Burgt; Mei Ren Pan; Ruozhen Hu; Kaiyi Li; Shiaw Yih Lin
To detect and repair damaged DNA, DNA-damage-response proteins need to overcome the barrier of condensed chromatin to gain access to DNA lesions. ATP-dependent chromatin remodelling is one of the fundamental mechanisms used by cells to relax chromatin in DNA repair. However, the mechanism mediating their recruitment to DNA lesions remains largely unknown. BRIT1 (also known as MCPH1) is an early DNA-damage-response protein that is mutated in human primary microcephaly. Here we report a previously unknown function of BRIT1 as a regulator of the ATP-dependent chromatin remodelling complex SWI–SNF in DNA repair. After damage to DNA, BRIT1 increases its interaction with SWI–SNF through ATM/ATR-dependent phosphorylation on the BAF170 subunit. This increase in binding affinity provides a means by which SWI–SNF can be specifically recruited to and maintained at DNA lesions. Loss of BRIT1 causes impaired chromatin relaxation as a result of decreased association of SWI–SNF with chromatin. This explains the decreased recruitment of repair proteins to DNA lesions and the reduced efficiency of repair in BRIT1-deficient cells, resulting in impaired cell survival after DNA damage. Our findings therefore identify BRIT1 as a key molecule that links chromatin remodelling with response to DNA damage in the control of DNA repair, and its dysfunction contributes to human disease.
Cancer Cell | 2009
Eun Kyoung Yim; Guang Peng; Hui Dai; Ruozhen Hu; Kaiyi Li; Yiling Lu; Gordon B. Mills; Funda Meric-Bernstam; Bryan T. Hennessy; Rolf J. Craven; Shiaw Yih Lin
Expression of the PTEN tumor suppressor is frequently lost in breast cancer in the absence of mutation or promoter methylation through as yet undetermined mechanisms. In this study, we demonstrate that the Rak tyrosine kinase physically interacts with PTEN and phosphorylates PTEN on Tyr336. Knockdown of Rak enhanced the binding of PTEN to its E3 ligase NEDD4-1 and promoted PTEN polyubiquitination, leading to PTEN protein degradation. Notably, ectopic expression of Rak effectively suppressed breast cancer cell proliferation, invasion, and colony formation in vitro and tumor growth in vivo. Furthermore, Rak knockdown was sufficient to transform normal mammary epithelial cells. Therefore, Rak acts as a bona fide tumor suppressor gene through the mechanism of regulating PTEN protein stability and function.
Journal of Biological Chemistry | 1997
Ruping Shao; Devarajan Karunagaran; Binhua P. Zhou; Kaiyi Li; Su Shun Lo; Jiong Deng; Paul Chiao; Mien Chie Hung
The adenoviral E1A protein has been implicated in the potentiation of apoptosis induced by various external stimuli, but the exact mechanism of that potentiation is not clear. In this study, we compared the sensitivity to ionizing γ-irradiation of E1A transfectants with that of parental cells in a human ovarian cancer cell line (SKOV3.ip1); we found that the E1A transfectants became sensitive to radiation-induced apoptosis. Recently, activation of the transcription factor nuclear factor-κB (NF-κB) has been shown to play a key role in the anti-apoptotic pathway of radiation-induced apoptosis. In an attempt to determine whether NF-κB was involved in the E1A-mediated sensitization of radiation-induced apoptosis, we found that radiation-induced activation of NF-κB occurred in the parental cells but was blocked in the E1A transfectants. Furthermore, parental cells cotransfected with NF-κB and E1A were better protected from undergoing apoptosis upon irradiation than those transfected with E1A alone. Thus, our results suggest that inhibition of NF-κB activation by E1A is a plausible mechanism for E1A-mediated sensitization of radiation-induced apoptosis.
Journal of Cell Biology | 2008
Nenggang Zhang; Sergey G. Kuznetsov; Shyam K. Sharan; Kaiyi Li; Pulivarthi H. Rao; Debananda Pati
The cohesin complex is responsible for the accurate separation of sister chromatids into two daughter cells. Several models for the cohesin complex have been proposed, but the one-ring embrace model currently predominates the field. However, the static configuration of the embrace model is not flexible enough for cohesins to perform their functions during DNA replication, transcription, and DNA repair. We used coimmunoprecipitation, a protein fragment complement assay, and a yeast two-hybrid assay to analyze the protein–protein interactions among cohesin subunits. The results show that three of the four human cohesin core subunits (Smc1, Smc3, and Rad21) interact with themselves in an Scc3 (SA1/SA2)-dependent manner. These data support a two-ring handcuff model for the cohesin complex, which is flexible enough to establish and maintain sister chromatid cohesion as well as ensure the fidelity of chromosome segregation in higher eukaryotes.
World Journal of Surgery | 2009
Yulong Liang; Shiaw Yih Lin; F. Charles Brunicardi; John A. Goss; Kaiyi Li
Mammalian cells are frequently at risk of DNA damage from multiple sources. Accordingly, cells have evolved the DNA damage response (DDR) pathways to monitor the integrity of their genome. Conceptually, DDR pathways contain three major components (some with overlapping functions): sensors, signal transducers, and effectors. At the level of sensors, ATM (ataxia telangiectasia mutated) and ATR (ATM-Rad3-related) are proximal kinases that act as the core sensors of and are central to the entire DDR. These two kinases function to detect various forms of damaged DNA and trigger DNA damage response cascades. If cells harbor DDR defects and fail to repair the damaged DNA, it would cause genomic instability and, as a result, lead to cellular transformation. Indeed, deficiencies of DDR frequently occur in human cancers. Interestingly, this property of cancer also provides a great opportunity for cancer therapy. For example, by using a synthetic lethality model to search for the effective drugs, ChK1 inhibitors have been shown to selectively target the tumor cells with p53 mutations. In addition, the inhibitors of poly(ADP-ribose) polymerase (PARP-1) showed selectively killing effects on the cells with defects of homologous recombination (HR), particularly in the context of BRCA1/2 mutations. Since Brit1 is a key regulator in DDR and HR repair, we believe that we can develop a similar strategy to target cancers with Brit1 deficiency. Currently, we are conducting a high-throughput screening to identify novel compounds that specifically target the Brit1-deficient cancer which will lead to development of effective personalized drugs to cure cancer in clinic.
Journal of Biological Chemistry | 2008
Jamie L. Wood; Yulong Liang; Kaiyi Li; Junjie Chen
Microcephalin/MCPH1 is one of the causative genes responsible for the autosomal recessive disorder primary microcephaly. Patients with this disease present with mental retardation and dramatic reduction in head size, and cells derived from these patients contain abnormally condensed chromosomes. MCPH1 contains an N-terminal BRCT and tandem C-terminal BRCT domains. More recently, MCPH1 has been implicated in the cellular response to DNA damage; however, the exact mechanism remains unclear. Here, we report the identification Condensin II as a major MCPH1-interacting protein. MCPH1 and Condensin II interact in vivo, mediated by the CAPG2 subunit of Condensin II binding to a middle domain (residues 376-485) of MCPH1. Interestingly, while Condensin II is not required for the IR-induced G2/M checkpoint, Condensin II-depleted cells have a defect in HR repair, which is also present in MCPH1-/-MEFs. Moreover, the Condensin II binding region of MCPH1 is also required for HR function. Collectively, we have identified a novel function of MCPH1 to modulate HR repair through Condensin II, and thereby maintain genome integrity.
PLOS Genetics | 2010
Yulong Liang; Hong Shan Gao; Shiaw-Yih Lin; Guang Peng; Xingxu Huang; Pumin Zhang; John A. Goss; F.C. Brunicardi; Asha S. Multani; Sandy Chang; Kaiyi Li
BRIT1 protein (also known as MCPH1) contains 3 BRCT domains which are conserved in BRCA1, BRCA2, and other important molecules involved in DNA damage signaling, DNA repair, and tumor suppression. BRIT1 mutations or aberrant expression are found in primary microcephaly patients as well as in cancer patients. Recent in vitro studies suggest that BRIT1/MCPH1 functions as a novel key regulator in the DNA damage response pathways. To investigate its physiological role and dissect the underlying mechanisms, we generated BRIT1 −/− mice and identified its essential roles in mitotic and meiotic recombination DNA repair and in maintaining genomic stability. Both BRIT1 −/− mice and mouse embryonic fibroblasts (MEFs) were hypersensitive to γ-irradiation. BRIT1 −/− MEFs and T lymphocytes exhibited severe chromatid breaks and reduced RAD51 foci formation after irradiation. Notably, BRIT1 −/− mice were infertile and meiotic homologous recombination was impaired. BRIT1-deficient spermatocytes exhibited a failure of chromosomal synapsis, and meiosis was arrested at late zygotene of prophase I accompanied by apoptosis. In mutant spermatocytes, DNA double-strand breaks (DSBs) were formed, but localization of RAD51 or BRCA2 to meiotic chromosomes was severely impaired. In addition, we found that BRIT1 could bind to RAD51/BRCA2 complexes and that, in the absence of BRIT1, recruitment of RAD51 and BRCA2 to chromatin was reduced while their protein levels were not altered, indicating that BRIT1 is involved in mediating recruitment of RAD51/BRCA2 to the damage site. Collectively, our BRIT1-null mouse model demonstrates that BRIT1 is essential for maintaining genomic stability in vivo to protect the hosts from both programmed and irradiation-induced DNA damages, and its depletion causes a failure in both mitotic and meiotic recombination DNA repair via impairing RAD51/BRCA2s function and as a result leads to infertility and genomic instability in mice.
Oncogene | 1999
Ana M. Tari; Mien Chie Hung; Kaiyi Li; Gabriel Lopez-Berestein
Increased breast cancer growth has been associated with increased expression of epidermal growth factor receptor (EGFR) and ErbB2 receptor tyrosine kinases (RTKs). Upon activation, RTKs may transmit their oncogenic signals by binding to the growth factor receptor bound protein-2 (Grb2), which in turn binds to SOS and activates the Ras/Raf/MEK/mitogen-activated protein (MAP) kinase pathway. Grb2 is important for the transformation of fibroblasts by EGFR and ErbB2; however, whether Grb2 is also important for the proliferation of breast cancer cells expressing these RTKs is unclear. We have used liposomes to deliver nuclease-resistant antisense oligodeoxynucleotides (oligos) specific for the GRB2 mRNA to breast cancer cells. Grb2 protein downregulation could inhibit breast cancer cell growth; the degree of growth inhibition was dependent upon the activation and/or endogenous levels of the RTKs. Grb2 inhibition led to MAP kinase inactivation in EGFR, but not in ErbB2, breast cancer cells, suggesting that different pathways might be used by EGFR and ErbB2 to regulate breast cancer growth.
Journal of Biological Chemistry | 2012
Mei Ren Pan; Hui Ju Hsieh; Hui Dai; Wen Chun Hung; Kaiyi Li; Guang Peng; Shiaw Yih Lin
Background: Identification of DNA repair regulators is important for gaining new insights into cancer development and treatment. Results: CHD4 interacts with BRIT1 and regulates its loading onto chromatin, which requires CHD4 chromatin remodeling activity. Conclusion: CHD4 functions as a proximal HR regulator, and its deficiency sensitizes cells to PARP inhibitor treatment. Significance: Our discoveries provide a novel approach, by inducing synthetic lethality, to target on CHD4-deficient tumors with PARP inhibitors. To ensure genome stability, cells have evolved a robust defense mechanism to detect, signal, and repair damaged DNA that is generated by exogenous stressors such as ionizing radiation, endogenous stressors such as free radicals, or normal physiological processes such as DNA replication. Homologous recombination (HR) repair is a critical pathway of repairing DNA double strand breaks, and it plays an essential role in maintaining genomic integrity. Previous studies have shown that BRIT1, also known as MCPH1, is a key regulator of HR repair. Here, we report that chromodomain helicase DNA-binding protein 4 (CHD4) is a novel BRIT1 binding partner that regulates the HR repair process. The BRCA1 C-terminal domains of BRIT1 are required for its interaction with CHD4. Depletion of CHD4 and overexpression of the ATPase-dead form of CHD4 impairs the recruitment of BRIT1 to the DNA damage lesions. As a functional consequence, CHD4 deficiency sensitizes cells to double strand break-inducing agents, reduces the recruitment of HR repair factor BRCA1, and impairs HR repair efficiency. We further demonstrate that CHD4-depleted cells are more sensitive to poly(ADP-ribose) polymerase inhibitor treatment. In response to DNA damage induced by poly(ADP-ribose) polymerase inhibitors, CHD4 deficiency impairs the recruitment of DNA repair proteins BRIT1, BRCA1, and replication protein A at early steps of HR repair. Taken together, our findings identify an important role of CHD4 in controlling HR repair to maintain genome stability and establish the potential therapeutic implications of targeting CHD4 deficiency in tumors.
Cell Cycle | 2008
Rekha Rai; Ashwini Phadnis; Sharda Haralkar; Rajendra A. Badwe; Hui Dai; Kaiyi Li; Shiaw Yih Lin
MDC1 and BRIT1 have been shown to function as key regulators in response to DNA damage. However, their roles in centrosomal regulation haven’t been elucidated. In this study, we demonstrated the novel functions of these two molecules in regulating centrosome duplication and mitosis. We found that MDC1 and BRIT1 were integral components of the centrosome that colocalize with γ-tubulin. Depletion of either protein led to centrosome amplification. However, the mechanisms that allow them to maintain centrosome integrity are different. MDC1-depleted cells exhibited centrosome overduplication, leading to multipolar mitosis, chromosome missegregation, and aneuploidy, whereas BRIT1 depletion led to misaligned spindles and/or lagging chromosomes with defective spindle checkpoint activation that resulted in defective cytokinesis and polyploidy. We further illustrated that both MDC1 and BRIT1 were negative regulators of Aurora A and Plk1, two centrosomal kinases involved in centrosome maturation and spindle assembly. Moreover, the levels of MDC1 and BRIT1 inversely correlated with centrosome amplification, defective mitosis, and cancer metastasis in human breast cancer. Together, MDC1 and BRIT1 may function as tumor-suppressor genes, at least in part by orchestrating proper centrosome duplication and mitotic spindle assembly.