Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kaizhu Huang is active.

Publication


Featured researches published by Kaizhu Huang.


IEEE Transactions on Pattern Analysis and Machine Intelligence | 2014

Robust Text Detection in Natural Scene Images

Xu-Cheng Yin; Xuwang Yin; Kaizhu Huang; Hongwei Hao

Text detection in natural scene images is an important prerequisite for many content-based image analysis tasks. In this paper, we propose an accurate and robust method for detecting texts in natural scene images. A fast and effective pruning algorithm is designed to extract Maximally Stable Extremal Regions (MSERs) as character candidates using the strategy of minimizing regularized variations. Character candidates are grouped into text candidates by the single-link clustering algorithm, where distance weights and clustering threshold are learned automatically by a novel self-training distance metric learning algorithm. The posterior probabilities of text candidates corresponding to non-text are estimated with a character classifier; text candidates with high non-text probabilities are eliminated and texts are identified with a text classifier. The proposed system is evaluated on the ICDAR 2011 Robust Reading Competition database; the f-measure is over 76%, much better than the state-of-the-art performance of 71%. Experiments on multilingual, street view, multi-orientation and even born-digital databases also demonstrate the effectiveness of the proposed method.Text detection in natural scene images is an important prerequisite for many content-based image analysis tasks. In this paper, we propose an accurate and robust method for detecting texts in natural scene images. A fast and effective pruning algorithm is designed to extract Maximally Stable Extremal Regions (MSERs) as character candidates using the strategy of minimizing regularized variations. Character candidates are grouped into text candidates by the single-link clustering algorithm, where distance weights and clustering threshold are learned automatically by a novel self-training distance metric learning algorithm. The posterior probabilities of text candidates corresponding to non-text are estimated with a character classifier; text candidates with high non-text probabilities are eliminated and texts are identified with a text classifier. The proposed system is evaluated on the ICDAR 2011 Robust Reading Competition database; the f-measure is over 76%, much better than the state-of-the-art performance of 71%. Experiments on multilingual, street view, multi-orientation and even born-digital databases also demonstrate the effectiveness of the proposed method.


systems man and cybernetics | 2011

m-SNE: Multiview Stochastic Neighbor Embedding

Bo Xie; Yang Mu; Dacheng Tao; Kaizhu Huang

Dimension reduction has been widely used in real-world applications such as image retrieval and document classification. In many scenarios, different features (or multiview data) can be obtained, and how to duly utilize them is a challenge. It is not appropriate for the conventional concatenating strategy to arrange features of different views into a long vector. That is because each view has its specific statistical property and physical interpretation. Even worse, the performance of the concatenating strategy will deteriorate if some views are corrupted by noise. In this paper, we propose a multiview stochastic neighbor embedding (m-SNE) that systematically integrates heterogeneous features into a unified representation for subsequent processing based on a probabilistic framework. Compared with conventional strategies, our approach can automatically learn a combination coefficient for each view adapted to its contribution to the data embedding. This combination coefficient plays an important role in utilizing the complementary information in multiview data. Also, our algorithm for learning the combination coefficient converges at a rate of O(1/k2), which is the optimal rate for smooth problems. Experiments on synthetic and real data sets suggest the effectiveness and robustness of m-SNE for data visualization, image retrieval, object categorization, and scene recognition.Dimension reduction has been widely used in real-world applications such as image retrieval and document classification. In many scenarios, different features (or multiview data) can be obtained, and how to duly utilize them is a challenge. It is not appropriate for the conventional concatenating strategy to arrange features of different views into a long vector. That is because each view has its specific statistical property and physical interpretation. Even worse, the performance of the concatenating strategy will deteriorate if some views are corrupted by noise. In this paper, we propose a multiview stochastic neighbor embedding (m-SNE) that systematically integrates heterogeneous features into a unified representation for subsequent processing based on a probabilistic framework. Compared with conventional strategies, our approach can automatically learn a combination coefficient for each view adapted to its contribution to the data embedding. This combination coefficient plays an important role in utilizing the complementary information in multiview data. Also, our algorithm for learning the combination coefficient converges at a rate of O(1/k(2)), which is the optimal rate for smooth problems. Experiments on synthetic and real data sets suggest the effectiveness and robustness of m-SNE for data visualization, image retrieval, object categorization, and scene recognition.


computer vision and pattern recognition | 2004

Learning classifiers from imbalanced data based on biased minimax probability machine

Kaizhu Huang; Haiqin Yang; Irwin King; Michael R. Lyu

We consider the problem of the binary classification on imbalanced data, in which nearly all the instances are labelled as one class, while far fewer instances are labelled as the other class, usually the more important class. Traditional machine learning methods seeking an accurate performance over a full range of instances are not suitable to deal with this problem, since they tend to classify all the data into the majority, usually the less important class. Moreover, some current methods have tried to utilize some intermediate factors, e.g., the distribution of the training set, the decision thresholds or the cost matrices, to influence the bias of the classification. However, it remains uncertain whether these methods can improve the performance in a systematic way. In this paper, we propose a novel model named biased minimax probability machine. Different from previous methods, this model directly controls the worst-case real accuracy of classification of the future data to build up biased classifier;. Hence, it provides a rigorous treatment on imbalanced data. The experimental results on the novel model comparing with those of three competitive methods, i.e., the naive Bayesian classifier, the k-nearest neighbor method, and the decision tree method C4.5, demonstrate the superiority of our novel model.


international symposium on neural networks | 2004

Biased support vector machine for relevance feedback in image retrieval

Chu-Hong Hoi; Chi-Hang Chan; Kaizhu Huang; Michael R. Lyu; Irwin King

Recently, support vector machines (SVMs) have been engaged on relevance feedback tasks in content-based image retrieval. Typical approaches by SVMs treat the relevance feedback as a strict binary classification problem. However, these approaches do not consider an important issue of relevance feedback, i.e. the unbalanced dataset problem, in which the negative instances largely outnumber the positive instances. For solving this problem, we propose a novel technique to formulate the relevance feedback based on a modified SVM called biased support vector machine (Biased SVM or BSVM). Mathematical formulation and explanations are provided for showing the advantages. Experiments are conducted to evaluate the performance of our algorithms, in which promising results demonstrate the effectiveness of our techniques.


IEEE Transactions on Neural Networks | 2008

Maxi–Min Margin Machine: Learning Large Margin Classifiers Locally and Globally

Kaizhu Huang; Haiqin Yang; Irwin King; Michael R. Lyu

In this paper, we propose a novel large margin classifier, called the maxi-min margin machine (M4). This model learns the decision boundary both locally and globally. In comparison, other large margin classifiers construct separating hyperplanes only either locally or globally. For example, a state-of-the-art large margin classifier, the support vector machine (SVM), considers data only locally, while another significant model, the minimax probability machine (MPM), focuses on building the decision hyperplane exclusively based on the global information. As a major contribution, we show that SVM yields the same solution as M4 when data satisfy certain conditions, and MPM can be regarded as a relaxation model of M4. Moreover, based on our proposed local and global view of data, another popular model, the linear discriminant analysis, can easily be interpreted and extended as well. We describe the M4 model definition, provide a geometrical interpretation, present theoretical justifications, and propose a practical sequential conic programming method to solve the optimization problem. We also show how to exploit Mercer kernels to extend M4 for nonlinear classifications. Furthermore, we perform a series of evaluations on both synthetic data sets and real-world benchmark data sets. Comparison with SVM and MPM demonstrates the advantages of our new model.


BMC Bioinformatics | 2009

Enhanced protein fold recognition through a novel data integration approach

Yiming Ying; Kaizhu Huang; Colin Campbell

BackgroundProtein fold recognition is a key step in protein three-dimensional (3D) structure discovery. There are multiple fold discriminatory data sources which use physicochemical and structural properties as well as further data sources derived from local sequence alignments. This raises the issue of finding the most efficient method for combining these different informative data sources and exploring their relative significance for protein fold classification. Kernel methods have been extensively used for biological data analysis. They can incorporate separate fold discriminatory features into kernel matrices which encode the similarity between samples in their respective data sources.ResultsIn this paper we consider the problem of integrating multiple data sources using a kernel-based approach. We propose a novel information-theoretic approach based on a Kullback-Leibler (KL) divergence between the output kernel matrix and the input kernel matrix so as to integrate heterogeneous data sources. One of the most appealing properties of this approach is that it can easily cope with multi-class classification and multi-task learning by an appropriate choice of the output kernel matrix. Based on the position of the output and input kernel matrices in the KL-divergence objective, there are two formulations which we respectively refer to as MKLdiv-dc and MKLdiv-conv. We propose to efficiently solve MKLdiv-dc by a difference of convex (DC) programming method and MKLdiv-conv by a projected gradient descent algorithm. The effectiveness of the proposed approaches is evaluated on a benchmark dataset for protein fold recognition and a yeast protein function prediction problem.ConclusionOur proposed methods MKLdiv-dc and MKLdiv-conv are able to achieve state-of-the-art performance on the SCOP PDB-40D benchmark dataset for protein fold prediction and provide useful insights into the relative significance of informative data sources. In particular, MKLdiv-dc further improves the fold discrimination accuracy to 75.19% which is a more than 5% improvement over competitive Bayesian probabilistic and SVM margin-based kernel learning methods. Furthermore, we report a competitive performance on the yeast protein function prediction problem.


systems man and cybernetics | 2006

Imbalanced learning with a biased minimax probability machine

Kaizhu Huang; Haiqin Yang; Irwin King; Michael R. Lyu

Imbalanced learning is a challenged task in machine learning. In this context, the data associated with one class are far fewer than those associated with the other class. Traditional machine learning methods seeking classification accuracy over a full range of instances are not suitable to deal with this problem, since they tend to classify all the data into a majority class, usually the less important class. In this correspondence, the authors describe a new approach named the biased minimax probability machine (BMPM) to deal with the problem of imbalanced learning. This BMPM model is demonstrated to provide an elegant and systematic way for imbalanced learning. More specifically, by controlling the accuracy of the majority class under all possible choices of class-conditional densities with a given mean and covariance matrix, this model can quantitatively and systematically incorporate a bias for the minority class. By establishing an explicit connection between the classification accuracy and the bias, this approach distinguishes itself from the many current imbalanced-learning methods; these methods often impose a certain bias on the minority data by adapting intermediate factors via the trial-and-error procedure. The authors detail the theoretical foundation, prove its solvability, propose an efficient optimization algorithm, and perform a series of experiments to evaluate the novel model. The comparison with other competitive methods demonstrates the effectiveness of this new model


international conference on data mining | 2009

GSML: A Unified Framework for Sparse Metric Learning

Kaizhu Huang; Yiming Ying; Colin Campbell

There has been significant recent interest in sparse metric learning (SML) in which we simultaneously learn both a good distance metric and a low-dimensional representation. Unfortunately, the performance of existing sparse metric learning approaches is usually limited because the authors assumed certain problem relaxations or they target the SML objective indirectly. In this paper, we propose a Generalized Sparse Metric Learning method (GSML). This novel framework offers a unified view for understanding many of the popular sparse metric learning algorithms including the Sparse Metric Learning framework proposed, the Large Margin Nearest Neighbor (LMNN), and the D-ranking Vector Machine (D-ranking VM). Moreover, GSML also establishes a close relationship with the Pairwise Support Vector Machine. Furthermore, the proposed framework is capable of extending many current non-sparse metric learning models such as Relevant Vector Machine (RCA) and a state-of-the-art method proposed into their sparse versions. We present the detailed framework, provide theoretical justifications, build various connections with other models, and propose a practical iterative optimization method, making the framework both theoretically important and practically scalable for medium or large datasets. A series of experiments show that the proposed approach can outperform previous methods in terms of both test accuracy and dimension reduction, on six real-world benchmark datasets.


european conference on machine learning | 2013

Fast k NN graph construction with locality sensitive hashing

Yan-Ming Zhang; Kaizhu Huang; Guanggang Geng; Cheng-Lin Liu

The k nearest neighbors (kNN) graph, perhaps the most popular graph in machine learning, plays an essential role for graph-based learning methods. Despite its many elegant properties, the brute force kNN graph construction method has computational complexity of O(n2), which is prohibitive for large scale data sets. In this paper, based on the divide-and-conquer strategy, we propose an efficient algorithm for approximating kNN graphs, which has the time complexity of O(l(d+logn)n) only (d is the dimensionality and l is usually a small number). This is much faster than most existing fast methods. Specifically, we engage the locality sensitive hashing technique to divide items into small subsets with equal size, and then build one kNN graph on each subset using the brute force method. To enhance the approximation quality, we repeat this procedure for several times to generate multiple basic approximate graphs, and combine them to yield a high quality graph. Compared with existing methods, the proposed approach has features that are: (1) much more efficient in speed (2) applicable to generic similarity measures; (3) easy to parallelize. Finally, on three benchmark large-scale data sets, our method beats existing fast methods with obvious advantages.


Neurocomputing | 2014

A novel classifier ensemble method with sparsity and diversity

Xu-Cheng Yin; Kaizhu Huang; Hongwei Hao; Khalid Iqbal; Zhi-Bin Wang

We consider the classifier ensemble problem in this paper. Due to its superior performance to individual classifiers, class ensemble has been intensively studied in the literature. Generally speaking, there are two prevalent research directions on this, i.e., to diversely generate classifier components, and to sparsely combine multiple classifiers. While most current approaches are emphasized on either sparsity or diversity only, we investigate the classifier ensemble by learning both sparsity and diversity simultaneously. We manage to formulate the classifier ensemble problem with the sparsity or/and diversity learning in a general framework. In particular, the classifier ensemble with sparsity and diversity can be represented as a mathematical optimization problem. We then propose a heuristic algorithm, capable of obtaining ensemble classifiers with consideration of both sparsity and diversity. We exploit the genetic algorithm, and optimize sparsity and diversity for classifier selection and combination heuristically and iteratively. As one major contribution, we introduce the concept of the diversity contribution ability so as to select proper classifier components and evolve classifier weights eventually. Finally, we compare our proposed novel method with other conventional classifier ensemble methods such as Bagging, least squares combination, sparsity learning, and AdaBoost, extensively on UCI benchmark data sets and the Pascal Large Scale Learning Challenge 2008 webspam data. The experimental results confirm that our approach leads to better performance in many aspects.

Collaboration


Dive into the Kaizhu Huang's collaboration.

Top Co-Authors

Avatar

Irwin King

The Chinese University of Hong Kong

View shared research outputs
Top Co-Authors

Avatar

Michael R. Lyu

The Chinese University of Hong Kong

View shared research outputs
Top Co-Authors

Avatar

Cheng-Lin Liu

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Haiqin Yang

The Chinese University of Hong Kong

View shared research outputs
Top Co-Authors

Avatar

Rui Zhang

Xi'an Jiaotong-Liverpool University

View shared research outputs
Top Co-Authors

Avatar

Xu-Cheng Yin

University of Science and Technology Beijing

View shared research outputs
Top Co-Authors

Avatar

Hongwei Hao

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Xi Yang

Xi'an Jiaotong-Liverpool University

View shared research outputs
Researchain Logo
Decentralizing Knowledge