Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kaj Fried is active.

Publication


Featured researches published by Kaj Fried.


Pain | 1999

Plasticity of sodium channel expression in DRG neurons in the chronic constriction injury model of neuropathic pain

Sulayman D. Dib-Hajj; Jenny Fjell; Theodore R. Cummins; Zheng Zheng; Kaj Fried; Robert H. LaMotte; Joel A. Black; Stephen G. Waxman

Previous studies have shown that transection of the sciatic nerve induces dramatic changes in sodium currents of axotomized dorsal root ganglion (DRG) neurons, which are paralleled by significant changes in the levels of transcripts of several sodium channels expressed in these neurons. Sodium currents that are resistant to tetrodotoxin (TTX-R) and the transcripts of two TTX-R sodium channels are significantly attenuated, while a rapidly repriming tetrodotoxin-sensitive (TTX-S) current emerges and the transcripts of alpha-III sodium channel, which produce a TTX-S current when expressed in oocytes, are up-regulated. We report here on changes in sodium currents and sodium channel transcripts in DRG neurons in the chronic constriction injury (CCI) model of neuropathic pain. CCI-induced changes in DRG neurons, 14 days post-surgery, mirror those of axotomy. Transcripts of NaN and SNS, two sensory neuron-specific TTX-R sodium channels, are significantly down-regulated as is the TTX-R sodium current, while transcripts of the TTX-S alpha-III sodium channel and a rapidly repriming TTX-S Na current are up-regulated in small diameter DRG neurons. These changes may provide at least a partial basis for the hyperexcitablity of DRG neurons that contributes to hyperalgesia in this model.


Neuroreport | 1996

GDNF mRNA in Schwann cells and DRG satellite cells after chronic sciatic nerve injury

Henrik Hammarberg; Fredrik Piehl; Staffan Cullheim; Fjell J; T. Hökfelt; Kaj Fried

Glial cell line-derived neurotrophic factor (GDNF) exhibits neurotrophic properties on different types of neurones, including fetal motoneurones and embryonic neurones of sensory ganglia. We demonstrate that chronic injury to the adult rat sciatic nerve induces a rapid up-regulation of GDNF mRNA expression in Schwann cells proximal as well as distal to the injury site, and that expression of this mRNA remains at high levels for at least 5 months after injury. In addition, GDNF mRNA increases and remains high in satellite cells and Schwann cells of the affected L4/L5 DRGs. These findings suggest that GDNF is an important factor in the events that follow upon adult chronic primary sensory neurone injury, and possibly also after adult motoneurone axotomy.


Molecular Brain Research | 1999

Differential role of GDNF and NGF in the maintenance of two TTX-resistant sodium channels in adult DRG neurons.

Jenny Fjell; Theodore R. Cummins; Sulayman D. Dib-Hajj; Kaj Fried; Joel A. Black; Stephen G. Waxman

Following sciatic nerve transection, the electrophysiological properties of small dorsal root ganglion (DRG) neurons are markedly altered, with attenuation of TTX-R sodium currents and the appearance of rapidly repriming TTX-S currents. The reduction in TTX-R currents has been attributed to a down-regulation of sodium channels SNS/PN3 and NaN. While infusion of exogenous NGF to the transected nerve restores SNS/PN3 transcripts to near-normal levels in small DRG neurons, TTX-R sodium currents are only partially rescued. Binding of the isolectin IB4 distinguishes two subpopulations of small DRG neurons: IB4+ neurons, which express receptors for the GDNF family of neurotrophins, and IB4- neurons that predominantly express TrkA. We show here that SNS/PN3 is expressed in approximately one-half of both IB4+ and IB4- DRG neurons, while NaN is preferentially expressed in IB4+ neurons. Whole-cell patch-clamp studies demonstrate that TTX-R sodium currents in IB4+ neurons have a more hyperpolarized voltage-dependence of activation and inactivation than do IB4- neurons, suggesting different electrophysiological properties for SNS/PN3 and NaN. We confirm that NGF restores SNS/PN3 mRNA levels in DRG neurons in vitro and demonstrate that the trk antagonist K252a blocks this rescue. The down-regulation of NaN mRNA is, nevertheless, not rescued by NGF-treatment in either IB4+ or IB4- neurons and NGF-treatment in vitro does not significantly increase the peak amplitude of the TTX-R current in small DRG neurons. In contrast, GDNF-treatment causes a twofold increase in the peak amplitude of TTX-R sodium currents and restores both SNS/PN3 and NaN mRNA to near-normal levels in IB4+ neurons. These observations provide a mechanism for the partial restoration of TTX-R sodium currents by NGF in axotomized DRG neurons, and demonstrate that the neurotrophins NGF and GDNF differentially regulate sodium channels SNS/PN3 and NaN.


Nature | 2014

Glial origin of mesenchymal stem cells in a tooth model system

Nina Kaukua; Maryam Khatibi Shahidi; Chrysoula Konstantinidou; Vyacheslav Dyachuk; Marketa Kaucka; Alessandro Furlan; Zhengwen An; Longlong Wang; Isabell Hultman; Larsa Ahrlund-Richter; Hans Blom; Hjalmar Brismar; Natalia Assaife Lopes; Vassilis Pachnis; Ueli Suter; Hans Clevers; Irma Thesleff; Paul T. Sharpe; Patrik Ernfors; Kaj Fried; Igor Adameyko

Mesenchymal stem cells occupy niches in stromal tissues where they provide sources of cells for specialized mesenchymal derivatives during growth and repair. The origins of mesenchymal stem cells have been the subject of considerable discussion, and current consensus holds that perivascular cells form mesenchymal stem cells in most tissues. The continuously growing mouse incisor tooth offers an excellent model to address the origin of mesenchymal stem cells. These stem cells dwell in a niche at the tooth apex where they produce a variety of differentiated derivatives. Cells constituting the tooth are mostly derived from two embryonic sources: neural crest ectomesenchyme and ectodermal epithelium. It has been thought for decades that the dental mesenchymal stem cells giving rise to pulp cells and odontoblasts derive from neural crest cells after their migration in the early head and formation of ectomesenchymal tissue. Here we show that a significant population of mesenchymal stem cells during development, self-renewal and repair of a tooth are derived from peripheral nerve-associated glia. Glial cells generate multipotent mesenchymal stem cells that produce pulp cells and odontoblasts. By combining a clonal colour-coding technique with tracing of peripheral glia, we provide new insights into the dynamics of tooth organogenesis and growth.


Genome Research | 2010

Susceptibility to chronic pain following nerve injury is genetically affected by CACNG2

Jonathan Nissenbaum; Marshall Devor; Ze'ev Seltzer; Mathias Gebauer; Martin Michaelis; Michael Tal; Ruslan Dorfman; Merav Abitbul-Yarkoni; Yan Lu; Tina Elahipanah; Sonia delCanho; Anne Minert; Kaj Fried; Anna-Karin Persson; Hagai Y. Shpigler; Erez Shabo; Benjamin Yakir; Anne Pisanté; Ariel Darvasi

Chronic neuropathic pain is affected by specifics of the precipitating neural pathology, psychosocial factors, and by genetic predisposition. Little is known about the identity of predisposing genes. Using an integrative approach, we discovered that CACNG2 significantly affects susceptibility to chronic pain following nerve injury. CACNG2 encodes for stargazin, a protein intimately involved in the trafficking of glutamatergic AMPA receptors. The protein might also be a Ca(2+) channel subunit. CACNG2 has previously been implicated in epilepsy. Initially, using two fine-mapping strategies in a mouse model (recombinant progeny testing [RPT] and recombinant inbred segregation test [RIST]), we mapped a pain-related quantitative trait locus (QTL) (Pain1) into a 4.2-Mb interval on chromosome 15. This interval includes 155 genes. Subsequently, bioinformatics and whole-genome microarray expression analysis were used to narrow the list of candidates and ultimately to pinpoint Cacng2 as a likely candidate. Analysis of stargazer mice, a Cacng2 hypomorphic mutant, provided electrophysiological and behavioral evidence for the genes functional role in pain processing. Finally, we showed that human CACNG2 polymorphisms are associated with chronic pain in a cohort of cancer patients who underwent breast surgery. Our findings provide novel information on the genetic basis of neuropathic pain and new insights into pain physiology that may ultimately enable better treatments.


Journal of Neurocytology | 1999

Structural basis of sympathetic-sensory coupling in rat and human dorsal root ganglia following peripheral nerve injury

Vera Shinder; Ruth Govrin-Lippmann; Shulamith Cohen; Michael Belenky; Polina Ilin; Kaj Fried; Harold A. Wilkinson; Marshall Devor

Tyrosine hydroxylase immunocytochemistry was used to reveal the sympathetic postganglionic axons that sprout to form basket-like skeins around the somata of some primary sensory neurons in dorsal root ganglia (DRGs) following sciatic nerve injury. Ultrastructural observations in rats revealed that these sprouts grow on the surface of glial lamellae that form on the neurons. Sciatic nerve injury triggers glial cell proliferation in the DRG, and the formation of multilamellar pericellular onion bulb sheaths, primarily around large diameter DRG neurons. We infer that these glia participate in the sprouting process by releasing neurotrophins and expressing growth supportive cell surface molecules. Many DRG cell somata, and their axons in intact nerves and nerve end neuromas, express α2A adrenoreceptors intracytoplasmically and on their membrane surface. However, sympathetic axons never make direct contacts with the soma membrane. The functional coupling known to occur between sympathetic efferents and DRG neurons must therefore be mediated by the diffusion of neurotransmitter molecules in the extracellular space. Sympathetic basket-skeins were observed in DRGs removed from human neuropathic pain patients, but the possibility of a functional relation between these structures and sensory symptoms remains speculative.


Science | 2014

Parasympathetic neurons originate from nerve-associated peripheral glial progenitors

Vyacheslav Dyachuk; Alessandro Furlan; Maryam Khatibi Shahidi; Marcela Giovenco; Nina Kaukua; Chrysoula Konstantinidou; Vassilis Pachnis; Fatima Memic; Ulrika Marklund; Thomas Müller; Carmen Birchmeier; Kaj Fried; Patrik Ernfors; Igor Adameyko

Exploiting nervous paths already traveled The parasympathetic nervous system helps regulate the functions of many tissues and organs, including the salivary glands and the esophagus. To do so, it needs to reach throughout the body, connecting central systems to peripheral ones. Dyachuk et al. and Espinosa-Medina et al. explored how these connections are established in mice (see the Perspective by Kalcheim and Rohrer). Progenitor cells that travel along with the developing nerves can give rise to both myelinforming Schwann cells and to parasympathetic neurons. That means the interacting nerves do not have to find each other. Instead, the beginnings of the connections are laid down as the nervous system develops. Science, this issue p. 82, p. 87; see also p. 32 Parasympathetic neurons are born from Schwann cell precursors located in the nerves that carry preganglionic fibers. [Also see Perspective by Kalcheim and Rohrer] The peripheral autonomic nervous system reaches far throughout the body and includes neurons of diverse functions, such as sympathetic and parasympathetic. We show that the parasympathetic system in mice—including trunk ganglia and the cranial ciliary, pterygopalatine, lingual, submandibular, and otic ganglia—arise from glial cells in nerves, not neural crest cells. The parasympathetic fate is induced in nerve-associated Schwann cell precursors at distal peripheral sites. We used multicolor Cre-reporter lineage tracing to show that most of these neurons arise from bi-potent progenitors that generate both glia and neurons. This nerve origin places cellular elements for generating parasympathetic neurons in diverse tissues and organs, which may enable wiring of the developing parasympathetic nervous system.


Journal of Neurocytology | 1991

Ultrastructure of afferent axon endings in a neuroma

Kaj Fried; Ruth Govrin-Lippmann; F. Rosenthal; Mark H. Ellisman; Marshall Devor

SummaryInjured sensory axons with endings trapped in a nerve-end neuroma become a source of abnormal impulse discharge and neuropathic pain. We have examined the ultrastructure of such endings using anterogradely transported WGA-HRP and freeze-fracture replication, with emphasis on the postinjury period during which the abnormal neural discharge is maximal. Most axons ended in a terminal swelling, depleted of myelin but surrounded by Schwann cell processes. These ‘neuroma endbulbs’ were richly packed with membrane-bound organelles, and had a smoothly undulating surface with (in neuromas of several weeks standing) a moderate number of short filopodia. Massive sprouting did not occur until several months postinjury. Both p- and e-faces of endbulb axolemma had larger intramembranous particles, on average, than corresponding internodal membrane of control axons. This change, interpreted as indicating remodelling of axolemmal channel (and perhaps receptor) content, may be related to the abnormal electrical behavior of neuroma afferents.


Neuroscience | 1989

Combined retrograde tracing and enzyme/immunohistochemistry of trigeminal ganglion cell bodies innervating tooth pulps in the rat

Kaj Fried; J. Arvidsson; B. Robertson; Ernst Brodin; Elvar Theodorsson

Rat trigeminal neurons innervating tooth pulps were retrogradely labelled with fluorogold and analysed enzyme- and immunohistochemically for their content of substance P, calcitonin gene-related peptide, fluoride-resistant acid phosphatase, GM 1 ganglioside, carbonic anhydrase and neurofilament protein. The data showed that both small, medium-sized and large trigeminal neurons were labelled after fluorogold deposition in maxillary molar pulps, with a majority of the cells being medium-sized and large. Less than 2% of the pulpal neurons showed substance P-like immunoreactivity. Fifty-six per cent of the pulpal nerve cells were calcitonin gene-related peptide-positive. These cells were small, medium-sized and large. Only 1% of the fluorogold-labelled cells contained fluoride-resistant acid phosphatase enzyme activity. This paralleled the finding that the pulpal neurons were unstained by Griffonia simplicifolia isolectin I-B4, a plant lectin which preferentially binds to fluoride-resistant acid phosphatase-positive cells. Choleragenoid-like immunoreactivity, which identifies cells with the GM 1 ganglioside receptor, was found in 70% of the fluorogold-labelled pulpal neurons. Approximately 80% of the fluorogold-labelled cells showed RT 97-immunoreactivity. RT 97 labels neurofilament protein and is present in large light primary sensory neurons. No pulpal neurons appeared to contain carbonic anhydrase, as judged from both enzyme- and immunocytochemical observations. The findings suggest that, in the rat, trigeminal tooth pulp neurons, which according to the classical view are nociceptive, form a heterogeneous group of neurons with a minority of small cells which may contain calcitonin gene-related peptide but rarely either substance P or fluoride-resistant acid phosphatase. However, the vast majority of pulpal nerve cells appear to have sizes and cytochemical characteristics which are not generally associated with nociceptive primary sensory neurons.


Neuroscience | 1995

Spinal axons in central nervous system scar tissue are closely related to laminin-immunoreactive astrocytes

Jonas Frisén; Anders Haegerstrand; M. Risling; Kaj Fried; C.B. Johansson; Henrik Hammarberg; Robert Elde; T. Hökfelt; Staffan Cullheim

Although transected central nervous system axons fail to regrow after injuries in adult mammals, they send sprouts into the scar tissue that forms at the lesion. We have investigated the relation between scar cells, laminin-like immunoreactivity and cut spinal axons in two previously characterized spinal cord lesion types. Labeling with antisera to glial fibrillary acidic protein and laminin demonstrated that the scar tissue formed after lesions in the rat and cat dorsal and ventral funiculi showed prominent gliosis and strong laminin-like immunoreactivity four days to one year postlesion. Axonal sprouts in the scar, visualized with antibodies to neurofilament (RT97) or by tracing using fluorescein-conjugated dextran, were ensheathed by a thin layer of strongly laminin-immunoreactive tissue. Immunoelectron microscopy demonstrated that axons in the scar were ensheathed predominantly by astrocytes, and that the surface of the cells outlining the axons in the scar showed strong laminin-like immunoreactivity. Adhesive and neurite orienting properties in the scar tissue were assessed in an in vitro system where PC12 cells were cultured on spinal cord slices from dorsal funiculus-lesioned rats. Very few cells adhered to the spinal cord section except for the part where the scar tissue had formed, where numerous cells were attached. The PC12 cells that had adhered to the scar tissue were mainly seen in parts of the scar that showed laminin-like immunoreactivity and their neurites predominantly followed tissue showing laminin-like immunoreactivity. The close association between axonal sprouts and laminin-like immunoreactivity indicates a role for laminin in axonal growth and/or guidance in the injured spinal cord.

Collaboration


Dive into the Kaj Fried's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Marshall Devor

Hebrew University of Jerusalem

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge