Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kajoli Banerjee Krishnan is active.

Publication


Featured researches published by Kajoli Banerjee Krishnan.


IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control | 2008

Improved contrast ultrasound with tissue harmonic minimizing pulse

Kajoli Banerjee Krishnan; Kai E. Thomenius

We have computed predistorted pulses that minimize tissue harmonics to < -25 dB compared to fundamental over a 4-cm depth in the focal region using a Hankel transform-based algorithm. The results indicate their potential in achieving patient independent improvement in contrast with microbubbles using wideband ultrasonic transducers at high mechanical indices.


Optical Methods in Drug Discovery and Development | 2005

A theory for the ultrasonic modulation of incoherent light in turbid medium

Kajoli Banerjee Krishnan; Pavel Alexeyevich Fomitchov; Stephen Johnson Lomnes; Manohar Kollegal; Floris Jansen

A diffusion approximation to the radiative transfer in a medium with varying refractive index has been proposed as a theoretical model for the ultrasonic tagging of fluorescence or FluoroSound, in a scattering medium. It has been found that the diffuse modulation is a defocusing effect. Defocusing is related to scatter - more the scatter, more the defocusing and there exists a component of the defocusing effect of scatter at the ultrasonic frequency. This is in contrast to the modulation for ballistic photons that originates in the focusing effect of the acoustic lens created by the ultrasonic wave. Simulations with circular phantoms of 1.5 and 2.0cm radius have shown that defocusing is minimum when the acoustic lens is midway between the source and the detector. These results are consistent with physics and demonstrate the capability of the model to function as a predictive tool for FluoroSound instrument design. Both ballistic and diffuse FluoroSound signatures can help in the simultaneous localization of the anomaly and determination of its optical properties. As an adjunct, optimally designed ultrasound beams can be also used to enhance diffuse photon modulation signal through acoustic guidance. Optical properties provide a way to discriminate between normal and diseased tissue. FluoroSound could therefore potentially achieve a fusion of anatomical and functional information non-invasively in a single measurement. The additional information made available by this method will improve the speed and accuracy of optical imaging as a tool in the identification and validation of targets.


Proceedings of SPIE | 2010

Automatic detection and measurement of femur length from fetal ultrasonography

Prateep Mukherjee; Gokul Swamy; Madhumita Gupta; Uday Patil; Kajoli Banerjee Krishnan

Femur bone length is used in the assessment of fetal development and in the prediction of gestational age (GA). In this paper, we present a completely automated two-step method for identifying fetal femur and measuring its length from 2D ultrasound images. The detection algorithm uses a normalized score premised on the distribution of anatomical shape, size and presentation of the femur bone in clinically acceptable scans. The measurement process utilizes a polynomial curve fitting technique to determine the end-points of the bone from a 1D profile that is most distal from the transducer surface. The method has been tested with manual measurements made on 90 third trimester femur images by two radiologists. The measurements made by the experts are strongly correlated (Pearsons coefficient = 0.95). Likewise, the algorithm estimate is strongly correlated with expert measurements (Pearsons coefficient = 0.92 and 0.94). Based on GA estimates and their bounds specified in Standard Obstetric Tables, the GA predictions from automated measurements are found to be within ±2SD of GA estimates from both manual measurements in 89/90 cases and within ±3SD in all 90 cases. The method presented in this paper can be adapted to perform automatic measurement of other fetal limbs.


Proceedings of SPIE | 2013

Enhancing reproducibility of ultrasonic measurements by new users

Manojit Pramanik; Madhumita Gupta; Kajoli Banerjee Krishnan

Perception of operator influences ultrasound image acquisition and processing. Lower costs are attracting new users to medical ultrasound. Anticipating an increase in this trend, we conducted a study to quantify the variability in ultrasonic measurements made by novice users and identify methods to reduce it. We designed a protocol with four presets and trained four new users to scan and manually measure the head circumference of a fetal phantom with an ultrasound scanner. In the first phase, the users followed this protocol in seven distinct sessions. They then received feedback on the quality of the scans from an expert. In the second phase, two of the users repeated the entire protocol aided by visual cues provided to them during scanning. We performed off-line measurements on all the images using a fully automated algorithm capable of measuring the head circumference from fetal phantom images. The ground truth (198.1±1.6 mm) was based on sixteen scans and measurements made by an expert. Our analysis shows that: (1) the inter-observer variability of manual measurements was 5.5 mm, whereas the inter-observer variability of automated measurements was only 0.6 mm in the first phase (2) consistency of image appearance improved and mean manual measurements was 4-5 mm closer to the ground truth in the second phase (3) automated measurements were more precise, accurate and less sensitive to different presets compared to manual measurements in both phases. Our results show that visual aids and automation can bring more reproducibility to ultrasonic measurements made by new users.


international conference on pattern recognition | 2010

Model-Based Detection of Acoustically Dense Objects in Ultrasound

Jyotirmoy Banerjee; Kajoli Banerjee Krishnan

Traditional methods of detection tend to under perform in the presence of the strong and variable background clutter that characterize a medical ultrasound image. In this paper, we present a novel diffusion based technique to localize acoustically dense objects in an ultrasound image. The approach is premised on the observation that the topology of noise in ultrasound images is more sensitive to diffusion than that of any such physical object (???). We show that our method when applied to the problem of fetal head detection and automatic measurement of head circumference in 59 obstetric scans compares remarkably well with manually assisted measurements. Based on fetal age estimates and their bounds specified in Standard OB Tables [6], the Gestational Age predictions from automated measurements is found to be within ± 2SD in 95% and 98% of cases when compared with manual measurements by two experts. The framework is general and can be extended to object localization in diverse applications of ultrasound imaging.


Journal of Biomedical Optics | 2007

Digital mouse phantom for optical imaging

Shekhar Dwivedi; Kajoli Banerjee Krishnan; Srikanth Suryanarayanan

We present a method for design and use of a digital mouse phantom for small animal optical imaging. We map the boundary of a mouse model from magnetic resonance imaging (MRI) data through image processing algorithms and discretize the geometry by a finite element (FE) descriptor. We use a validated FE implementation of the three-dimensional (3-D) diffusion equation to model transport of near infrared (NIR) light in the phantom with a mesh resolution optimized for representative tissue optical properties on a computing system with 8-GB RAM. Our simulations demonstrate that a section of the mouse near the light source is adequate for optical system design and that the variation of intensity of light on the boundary is well within typical noise levels for up to 20% variation in optical properties and nodes used to model the boundary of the phantom. We illustrate the use of the phantom in setting goals for specific binding of targeted exogenous fluorescent contrasts based on anatomical location by simulating a nearly tenfold change in the detectability of a 2-mm-deep target depending on its placement. The methodology described is sufficiently general and may be extended to generate digital phantoms for designing clinical optical imaging systems.


internaltional ultrasonics symposium | 2002

Higher order nonlinear ultrasound propagation in tissue-simulation study

Bruno Hans Haider; Kajoli Banerjee Krishnan; Kai E. Thomenius

Nonlinear wave propagation in tissue has been simulated using typical propagation parameters for liver. The results indicate that the amplitude level of higher order harmonics can exceed the level of the second harmonic component. In that case detection of the higher order components can be achieved with increased signal to noise ratio due to the fact that the amplitude of the 3/sup rd/ order component can be higher than the 2/sup nd/ harmonic and the fact that the 3/sup rd/ order mixing component falls into the middle of the transducer bandwidth. Odd order harmonic components are of particular interest since they create spectral mixing products at the fundamental frequency. Therefore, transmission and reception can operate around the same center frequency.


Optical Methods in Drug Discovery and Development | 2005

Photon transport models for predictive assessment of imageability

Kajoli Banerjee Krishnan; Stephen Johnson Lomnes; Manohar Kollegal; Amey Joshi; Andrew Healey

Accurate calculation of internal fluence excited in tissue from an optical source can be used for predicting the performance of fluorescent contrast agents for clinical applications. Solutions of excitation fluence for a steady-state Monte Carlo model and a finite element implementation of the 3d diffusion equation have been compared up to depths of 20mm from a point source located on top of a homogeneous cylindrical phantom for a range of reduced scattering-to-absorption ratios. Differences between the fluence calculated by Monte Carlo and diffusion model is found to be dependent on the transport mean free path (mfp), size of the phantom in relation to the penetration depth, distance from the source and mesh resolution. The differences are small at depths ~ mfp and peak at depths ~2mfp. The differences should ideally reduce to zero at large depths but the magnitude of the differences tend to increase due to the finite boundary in the diffusion model. As an example, for a mfp = 0.817mm similar in magnitude to mesh resolution, diffusion fluence at 1mm, 2mm, 10mm and 14mm is 76%, 59%, 66% and 63% respectively of Monte Carlo fluence. For large mfps characteristic of non- diffusive regimes, diffusion model overestimates fluence at distances less than one mfp. This work demonstrates that mean free path and mesh resolution are the critical parameters that distinguish the performance of Monte Carlo and diffusion models to define error margins that could be utilized for predictive assessment of imageability of fluorescent agents using the diffusion model.


Biosilico | 2004

A virtual study of shape-based optical reconstruction

Kajoli Banerjee Krishnan; Meera Kuppusamy; Floris Jansen; Stephen Johnson Lomnes

We demonstrate the use of a priori knowledge of lesion shape from ultrasound to improve quantitative accuracy of 2D optical tomography. Mean absorption in the lesion can be estimated within 20% of actual value.


Proceedings of SPIE | 2011

Automatic detection and estimation of biparietal diameter from fetal ultrasonography

Pavan Annangi; Kajoli Banerjee Krishnan; Jyotirmoy Banerjee; Madhumita Gupta; Uday Patil

Fetal bi-parietal diameter (BPD) is known to provide a reliable estimate of gestational age (GA) of a fetus in the first half of pregnancy. In this paper, we present an automated method to identify and measure BPD from B-mode ultrasound images of fetal head. The method (a) automatically detects and places a region-of-interest on the head based on a prior work in our group (b) utilizes the concept of phase congruency for edge detection and (c) employs a cost function to identify the third ventricle inside the head (d) measures the BPD along the perpendicular bisector of occipital frontal diameter (OFD) from the outer rim of the cranium closer to the transducer to the inner rim of the cranium away from the transducer. The cost function is premised on the distribution of anatomical shape, size and presentation of the third ventricle in images that adhere to clinical guidelines describing the scan plane for BPD measurement. The OFD is assumed to lie along the third ventricle. The algorithm has been tested on 137 images acquired from four different scanners. Based on GA estimates and their bounds specified in Standard Obstetric Tables, the GA predictions from automated measurements are found to be within ±2SD of GA estimates from manual measurements by the operator and a second expert radiologist in 98% of the cases. The method described in this paper can also be adapted to assess the accuracy of the scan plane based on the presence/absence of the third ventricle.

Collaboration


Dive into the Kajoli Banerjee Krishnan's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge