Kak-Ming Ling
University of Western Australia
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Kak-Ming Ling.
European Respiratory Journal | 2015
Luke W. Garratt; Erika N. Sutanto; Kak-Ming Ling; Kevin Looi; Thomas Iosifidis; Kelly M. Martinovich; Nicole C. Shaw; E. Kicic-Starcevich; Darryl A. Knight; Sarath Ranganathan; Stephen M. Stick; Anthony Kicic
Neutrophil elastase is the most significant predictor of bronchiectasis in early-life cystic fibrosis; however, the causal link between neutrophil elastase and airway damage is not well understood. Matrix metalloproteinases (MMPs) play a crucial role in extracellular matrix modelling and are activated by neutrophil elastase. The aim of this study was to assess if MMP activation positively correlates with neutrophil elastase activity, disease severity and bronchiectasis in young children with cystic fibrosis. Total MMP-1, MMP-2, MMP-7, MMP-9, tissue inhibitor of metalloproteinase (TIMP)-2 and TIMP-1 levels were measured in bronchoalveolar lavage fluid collected from young children with cystic fibrosis during annual clinical assessment. Active/pro-enzyme ratio of MMP-9 was determined by gelatin zymography. Annual chest computed tomography imaging was scored for bronchiectasis. A higher MMP-9/TIMP-1 ratio was associated with free neutrophil elastase activity. In contrast, MMP-2/TIMP-2 ratio decreased and MMP-1 and MMP-7 were not detected in the majority of samples. Ratio of active/pro-enzyme MMP-9 was also higher in the presence of free neutrophil elastase activity, but not infection. Across the study cohort, both MMP-9/TIMP-1 and active MMP-9 were associated with progression of bronchiectasis. Both MMP-9/TIMP-1 and active MMP-9 increased with free neutrophil elastase and were associated with bronchiectasis, further demonstrating that free neutrophil elastase activity should be considered an important precursor to cystic fibrosis structural disease. In young children with CF, activation of MMP-9 by free NE may provide one mechanism driving structural lung disease http://ow.ly/KArB5
Clinical & Experimental Allergy | 2016
Anthony Kicic; Paul T. Stevens; Erika N. Sutanto; E. Kicic-Starcevich; Kak-Ming Ling; Kevin Looi; Kelly M. Martinovich; Luke W. Garratt; Thomas Iosifidis; Nicole C. Shaw; Alysia G. Buckley; Paul Rigby; Francis J. Lannigan; Darryl A. Knight; S. Stick
The airway epithelium forms an effective immune and physical barrier that is essential for protecting the lung from potentially harmful inhaled stimuli including viruses. Human rhinovirus (HRV) infection is a known trigger of asthma exacerbations, although the mechanism by which this occurs is not fully understood.
Environmental Toxicology | 2016
Benjamin J. Mullins; Anthony Kicic; Kak-Ming Ling; Ryan Mead-Hunter; Alexander N. Larcombe
Increasing use of biodiesel has prompted research into the potential health effects of biodiesel exhaust exposure. Few studies directly compare the health consequences of mineral diesel, biodiesel, or blend exhaust exposures. Here, we exposed human epithelial cell cultures to diluted exhaust generated by the combustion of Australian ultralow‐sulfur‐diesel (ULSD), unprocessed canola oil, 100% canola biodiesel (B100), and a blend of 20% canola biodiesel mixed with 80% ULSD. The physicochemical characteristics of the exhaust were assessed and we compared cellular viability, apoptosis, and levels of interleukin (IL)‐6, IL‐8, and Regulated on Activation, Normal T cell Expressed and Secreted (RANTES) in exposed cultured cells. Different fuel types produced significantly different amounts of exhaust gases and different particle characteristics. All exposures resulted in significant apoptosis and loss of viability when compared with control, with an increasing proportion of biodiesel being correlated with a decrease in viability. In most cases, exposure to exhaust resulted in an increase in mediator production, with the greatest increases most often in response to B100. Exposure to pure canola oil (PCO) exhaust did not increase mediator production, but resulted in a significant decrease in IL‐8 and RANTES in some cases. Our results show that canola biodiesel exhaust exposure elicits inflammation and reduces viability of human epithelial cell cultures in vitro when compared with ULSD exhaust exposure. This may be related to an increase in particle surface area and number in B100 exhaust when compared with ULSD exhaust. Exposure to PCO exhaust elicited the greatest loss of cellular viability, but virtually no inflammatory response, likely due to an overall increase in average particle size.
American Journal of Respiratory Cell and Molecular Biology | 2016
Luke W. Garratt; Erika N. Sutanto; Kak-Ming Ling; Kevin Looi; Thomas Iosifidis; Kelly M. Martinovich; Nicole C. Shaw; Alysia G. Buckley; E. Kicic-Starcevich; Francis J. Lannigan; Darryl A. Knight; Stephen M. Stick; Anthony Kicic
Neutrophil elastase (NE) activity is associated with many destructive lung diseases and is a predictor for structural lung damage in early cystic fibrosis (CF), which suggests normal maintenance of airway epithelium is prevented by uninhibited NE. However, limited data exist on how the NE activity in airways of very young children with CF affects function of the epithelia. The aim of this study was to determine if NE activity could inhibit epithelial homeostasis and repair and whether any functional effect was reversible by antiprotease alpha-1 antitrypsin (α1AT) treatment. Viability, inflammation, apoptosis, and proliferation were assessed in healthy non-CF and CF pediatric primary airway epithelial cells (pAECnon-CF and pAECCF, respectively) during exposure to physiologically relevant NE. The effect of NE activity on pAECCF wound repair was also assessed. We report that viability after 48 hours was significantly decreased by 100 nM NE in pAECnon-CF and pAECCF owing to rapid cellular detachment that was accompanied by inflammatory cytokine release. Furthermore, both phenotypes initiated an apoptotic response to 100 nM NE, whereas ≥ 50 nM NE activity significantly inhibited the proliferative capacity of cultures. Similar concentrations of NE also significantly inhibited wound repair of pAECCF, but this effect was reversed by the addition of α1AT. Collectively, our results demonstrate free NE activity is deleterious for epithelial homeostasis and support the hypothesis that proteases in the airway contribute directly to CF structural lung disease. Our results also highlight the need to investigate antiprotease therapies in early CF disease in more detail.
Physiological Reports | 2017
Shelley Gorman; Alysia G. Buckley; Kak-Ming Ling; Luke J. Berry; Vanessa S. Fear; Stephen M. Stick; Alexander N. Larcombe; Anthony Kicic; Prue H. Hart
In disease settings, vitamin D may be important for maintaining optimal lung epithelial integrity and suppressing inflammation, but less is known of its effects prior to disease onset. Female BALB/c dams were fed a vitamin D3‐supplemented (2280 IU/kg, VitD+) or nonsupplemented (0 IU/kg, VitD−) diet from 3 weeks of age, and mated at 8 weeks of age. Male offspring were fed the same diet as their mother. Some offspring initially fed the VitD− diet were switched to a VitD+ diet from 8 weeks of age (VitD−/+). At 12 weeks of age, signs of low‐level inflammation were observed in the bronchoalveolar lavage fluid (BALF) of VitD− mice (more macrophages and neutrophils), which were suppressed by subsequent supplementation with vitamin D3. There was no difference in the level of expression of the tight junction proteins occludin or claudin‐1 in lung epithelial cells of VitD+ mice compared to VitD− mice; however, claudin‐1 levels were reduced when initially vitamin D‐deficient mice were fed the vitamin D3‐containing diet (VitD−/+). Reduced total IgM levels were detected in BALF and serum of VitD−/+ mice compared to VitD+ mice. Lung mRNA levels of the vitamin D receptor (VDR) were greatest in VitD−/+ mice. Total IgG levels in BALF were greater in mice fed the vitamin D3‐containing diet, which may be explained by increased activation of B cells in airway‐draining lymph nodes. These findings suggest that supplementation of initially vitamin D‐deficient mice with vitamin D3 suppresses signs of lung inflammation but has limited effects on the epithelial integrity of the lungs.
Scientific Reports | 2018
Anya C. Jones; Niamh Troy; Elisha White; Elysia M. Hollams; Alexander M. Gout; Kak-Ming Ling; Anthony Kicic; Stephen M. Stick; Peter D. Sly; Patrick G. Holt; Graham L. Hall; Anthony Bosco
Atopic asthma is a persistent disease characterized by intermittent wheeze and progressive loss of lung function. The disease is thought to be driven primarily by chronic aeroallergen-induced type 2-associated inflammation. However, the vast majority of atopics do not develop asthma despite ongoing aeroallergen exposure, suggesting additional mechanisms operate in conjunction with type 2 immunity to drive asthma pathogenesis. We employed RNA-Seq profiling of sputum-derived cells to identify gene networks operative at baseline in house dust mite-sensitized (HDMS) subjects with/without wheezing history that are characteristic of the ongoing asthmatic state. The expression of type 2 effectors (IL-5, IL-13) was equivalent in both cohorts of subjects. However, in HDMS-wheezers they were associated with upregulation of two coexpression modules comprising multiple type 2- and epithelial-associated genes. The first module was interlinked by the hubs EGFR, ERBB2, CDH1 and IL-13. The second module was associated with CDHR3 and mucociliary clearance genes. Our findings provide new insight into the molecular mechanisms operative at baseline in the airway mucosa in atopic asthmatics undergoing natural aeroallergen exposure, and suggest that susceptibility to asthma amongst these subjects involves complex interactions between type 2- and epithelial-associated gene networks, which are not operative in equivalently sensitized/exposed atopic non-asthmatics.
Respirology | 2016
Kak-Ming Ling; Erika N. Sutanto; Thomas Iosifidis; E. Kicic-Starcevich; Kevin Looi; Luke W. Garratt; Kelly M. Martinovich; Francis J. Lannigan; Darryl A. Knight; Stephen M. Stick; Anthony Kicic
Evidence into the role of TGF‐β1 in airway epithelial repair in asthma is still controversial. This study tested the hypothesis that the reduced TGF‐β1 levels previously observed in paediatric asthmatic airway epithelial cells directly contribute to the dysregulated repair seen in these cells.
Experimental Lung Research | 2016
Kevin Looi; Niamh Troy; Luke W. Garratt; Thomas Iosifidis; Anthony Bosco; Alysia G. Buckley; Kak-Ming Ling; Kelly M. Martinovich; E. Kicic-Starcevich; Nicole C. Shaw; Erika N. Sutanto; Graeme R. Zosky; Paul Rigby; Alexander N. Larcombe; Darryl A. Knight; Anthony Kicic; Stephen M. Stick
ABSTRACT Rationale: No studies have assessed the effects of human rhinovirus (HRV) infection on epithelial tight junctions (TJs) and resultant barrier function. Aim of the Study: To correlate viral infection with TJ disassembly, epithelial barrier integrity, and function. Materials and Methods: Human airway epithelial cells were infected with HRV minor serotype 1B (HRV-1B) at various 50% tissue culture infectivity doses (TCID50) over 72 hours. HRV replication was assessed by quantitative-polymerase chain reaction (qPCR) while cell viability and apoptosis were assessed by proliferation and apoptotic assays, respectively. Protein expression of claudin-1, occludin, and zonula occludens protein-1 (ZO-1) was assessed using In-Cell™ Western assays. Transepithelial permeability assays were performed to assess effects on barrier functionality. RT2 Profiler focused qPCR arrays and pathway analysis evaluating associations between human TJ and antiviral response were performed to identify potential interactions and pathways between genes of interests. Results: HRV-1B infection affected viability that was both time and TCID50 dependent. Significant increases in apoptosis and viral replication post-infection correlated with viral titer. Viral infection significantly decreased claudin-1 protein expression at the lower TCID50, while a significant decrease in all three TJ protein expressions occurred at higher TCID50. Decrease in protein expression was concomitant with significant increases in epithelial permeability of fluorescein isothiocynate labeled-dextran 4 and 20 kDa. Analysis of focused qPCR arrays demonstrated a significant decrease in ZO-1 gene expression. Furthermore, network analysis between human TJ and antiviral response genes revealed possible interactions and regulation of TJ genes via interleukin (IL)-15 in response to HRV-1B infection. Conclusion: HRV-1B infection directly alters human airway epithelial TJ expression leading to increased epithelial permeability potentially via an antiviral response of IL-15.
Experimental Lung Research | 2014
Luke W. Garratt; Erika N. Sutanto; Clara J. Foo; Kak-Ming Ling; Kevin Looi; E. Kicic-Starcevich; Thomas Iosifidis; Kelly M. Martinovich; Francis J. Lannigan; Stephen M. Stick; Anthony Kicic
ABSTRACT Aim of the study: The bronchial brushing technique presents an opportunity to establish a gold standard in vitro model of Cystic Fibrosis (CF) airway disease. However, unique obstacles exist when establishing CF airway epithelial cells (pAECCF). We aimed to identify determinants of culture success through retrospective analysis of a program of routinely brushing children with CF. Materials and methods: Anaesthetised children (CF and non-CF) had airway samples taken which were immediately processed for cell culture. Airway data for the CF cohort was obtained from clinical records and the AREST CF database. Results: Of 260 brushings processed for culture, 114 (43.8%) pAECCF successfully cultured to passage one (P1) and 63 (24.2% of total) progressed to passage two (P2). However, >80% of non-CF specimens (pAECnon-CF) cultured to P2 from similar cell numbers. Within the CF cohort, specimens successfully cultured to P2 had a higher initial cell count and lower proportion of severe CF mutation phenotype than those that did not proliferate beyond initial seeding. Elevated airway IL-8 concentration was also negatively associated with culture establishment. Contamination by opportunistic pathogens was observed in 81 (31.2% of total) cultures and brushings from children with lower respiratory tract infections were more likely to co-culture contaminating flora. Conclusions: Lower passage rates of pAECCF cultures uniquely contrasts with pAECnon-CF despite similar cell numbers. An equivalent establishment rate of CF nasal epithelium reported elsewhere, significant associations to CFTR mutation phenotype, elevated airway IL-8 and opportunistic pathogens all suggest this is likely related to the CF disease milieu.
Clinical & Experimental Allergy | 2018
Kevin Looi; Alysia G. Buckley; Paul Rigby; Luke W. Garratt; Thomas Iosifidis; Graeme R. Zosky; Alexander N. Larcombe; Francis J. Lannigan; Kak-Ming Ling; Kelly M. Martinovich; E. Kicic-Starcevich; Nicole C. Shaw; Erika N. Sutanto; Darryl A. Knight; Anthony Kicic; Stephen M. Stick
Bronchial epithelial tight junctions (TJ) have been extensively assessed in healthy airway epithelium. However, no studies have yet assessed the effect of human rhinovirus (HRV) infection on the expression and resultant barrier function in epithelial tight junctions (TJ) in childhood asthma.