Kalam Cheung
University of Southern California
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Kalam Cheung.
Aerosol Science and Technology | 2010
Kalam Cheung; Leonidas Ntziachristos; Theodoros Tzamkiozis; James J. Schauer; Zissis Samaras; Katharine Moore; Constantinos Sioutas
Three light-duty passenger vehicles were tested in five configurations in a chassis dynamometer study to determine the chemical and oxidative potential of the particulate exhaust emissions. The first vehicle was a diesel Honda with a three-stage oxidation system. Its main catalyst was replaced with a diesel particulate filter (DPF) and tested as a second configuration. The second vehicle was a gasoline-fuelled Toyota Corolla with a three-way catalytic converter. The last vehicle was an older Volkswagen Golf, tested using petro-diesel in its original configuration, and biodiesel with an oxidation catalyst as an alternative configuration. Particulate matter (PM) was collected on filters and subsequently analyzed using various chemical and toxicological assays. The production of reactive oxygen species (ROS), quantified by the dithiothreitol (DTT) and macrophage-ROS assays, was used to measure the PM-induced oxidative potential. The results showed that the Golf vehicle in both configurations had the highest emissions of organic species (PAHs, hopanes, steranes, and organic acids). The DPF-equipped diesel Accord car emitted PM with the lowest amounts of organic species and the lowest oxidative potential. Correlation analyses showed that soluble Fe is strongly associated with particulate ROS activity (R = 0.99), while PAHs and hopanes were highly associated with DTT consumption rates (R = 0.94 and 0.91, respectively). In particular, tracers of lube oil emissions, namely Zn, P, Ca, and hopanes, were strongly correlated with distance-based DTT consumption rates (R = 0.96, 0.92, 0.83, and 0.91, respectively), suggesting that incomplete combustion of lube oil might be important driving factors of the overall PM-induced oxidative stress.
Environmental Science & Technology | 2012
Kalam Cheung; Martin M. Shafer; James J. Schauer; Constantinos Sioutas
To investigate the relationship among sources, chemical composition, and redox activity of coarse particulate matter (CPM), three sampling sites were set up up in the Los Angeles Basin to collect ambient coarse particles at four time periods (morning, midday, afternoon, and overnight) in summer 2009 and winter 2010. The generation of reactive oxygen species (ROS) was used to assess the redox activity of these particles. Our results present distinct diurnal profiles of CPM-induced ROS formation in the two seasons, with much higher levels in summer than winter. Higher ROS activity was observed in the midday/afternoon during summertime, while the peak activity occurred in the overnight period in winter. Crustal materials, the major component of CPM, demonstrated very low water-solubility, in contrast with the modestly water-soluble anthropogenic metals, including Ba and Cu. The water-soluble fraction of four elements (V, Pd, Cu, and Rh) with primary anthropogenic origins displayed the highest associations with ROS activity (R(2) > 0.60). Our results show that coarse particles generated by anthropogenic activities, despite their low contribution to CPM mass, are important to the biological activity of CPM, and that a more targeted control strategy may be needed to protect the public health from these toxic CPM sources.
Inhalation Toxicology | 2010
Theodoros Tzamkiozis; Tobias Stoeger; Kalam Cheung; Leonidas Ntziachristos; Constantinos Sioutas; Zissis Samaras
This study presents different research techniques linked together to improve our understanding of the particulate matter (PM) impacts on health. PM samples from the exhaust of different vehicles were collected by a versatile aerosol concentration enrichment system (VACES). Waterborne PM samples were collected with this technique, thus retaining the original physicochemical characteristics of aerosol particles. PM samples originated from a gasoline Euro 3 car and two diesel cars complying with the Euro 2 and Euro 4 standards, respectively. The Euro 2 diesel car operated consecutively on fossil diesel and biodiesel. The Euro 4 car was also retrofitted with a diesel particle filter. In total, five vehicle configurations and an equal number of samples were examined. Each sample was intratracheally instilled to 10 mice at two different dose levels (50 and 100 μL). The mice were analyzed 24 h after instillation for acute lung inflammation by bronchoalveolar lavage and also for hematological changes. Results show that a moderate but still significant inflammatory response is induced by PM samples, depending on the vehicle. Several organic and inorganic species, including benz(a)anthracene, chrysene, Mn, Fe, Cu, and heavy polycyclic aromatic hydrocarbons (PAHs), as well as the reactive oxygen species content of the PM suspensions are correlated to the observed responses. The study develops conceptual dose–response functions for the different vehicle configurations. These demonstrate that inflammatory response is not directly proportional to the mass dose level of the administered PM and that the relative toxicity potency depends on the dosage level.
Journal of The Air & Waste Management Association | 2012
Kalam Cheung; Martin M. Shafer; James J. Schauer; Constantinos Sioutas
To assess the impact of past, current and proposed air quality regulations on coarse particulate matter (CPM), the concentrations of CPM mass and its chemical constituents were examined in the Los Angeles Basin from 1986 to 2009 using PM data acquired from peer-reviewed journals and regulatory agency database. PM10 mass levels decreased by approximately half from 1988 to 2009 at the three sampling sites examined- located in downtown Los Angeles, Long Beach and Riverside. Annual CPM mass concentrations were calculated from the difference between daily PM10 and PM2.5 from 1999 to 2009. High CPM episodes driven by high wind speed/stagnant condition caused year-to-year fluctuations in the 99th/98th percentile CPM levels. The reductions of average CPM levels were lower than those of PM10 in the same period, therefore the decrease of PM10 level was mainly driven by reductions in the emission levels of PM2.5 (or fine) particles, as demonstrated by the higher annual reduction of average PM2.5 (0.92 µg/m3) compared with CPM (0.39 µg/m3) from 1999 to 2009 in downtown Los Angeles despite their comparable concentrations. This is further confirmed by the significant decrease of Ni, Cr, V, and EC in the coarse fraction after 1995. On the other hand, the levels of several inorganic ions (sulfate, chloride and to a lesser extent nitrate) remained comparable. From 1995 to 2008, levels of Cu, a tracer of brake wear, either remained similar or decreased at a smaller rate compared with elements of combustion origins. This differential reduction of CPM components suggests that past and current regulations may have been more effective in reducing fugitive dust (Al, Fe and Si) and combustion emissions (Ni, Cr, V, and EC) rather than CPM from vehicular abrasion (Cu) and inorganic ions (NO3 −, SO4 2− and Cl−) in urban areas. Implications Limited information is currently available to provide the scientific basis for understanding the sources and physical and chemical variations of CPM, and their relations to air quality regulations and adverse health effects. This study investigates the historical trends of CPM mass and its chemical components in the Los Angeles Basin to advance our understanding on the impact of past and current air quality regulations on the coarse fraction of PM. The results of this study will aid policy makers to design more targeted regulations to control CPM sources to ensure substantial protection of public health from CPM exposure. Supplemental Materials Supplemental materials are available for this article. Go to the publishers online edition of the Journal of the Air & Waste Management Association for (1) details of the sampling sites and (2) the daily concentrations of high CPM/PM10 episodes.
Journal of Environmental Monitoring | 2011
Kalam Cheung; Nancy Daher; Martin M. Shafer; Zhi Ning; James J. Schauer; Constantinos Sioutas
To investigate the diurnal profile of the concentration and composition of ambient coarse particles, three sampling sites were set up in the Los Angeles Basin to collect coarse particulate matter (CPM) in four different time periods of the day (morning, midday, afternoon and overnight) in summer and winter. The samples were analyzed for total and water-soluble elements, inorganic ions and water-soluble organic carbon (WSOC). In summer, highest concentrations of CPM gravimetric mass, mineral and road dust, and WSOC were observed in midday and afternoon, when the prevailing onshore wind was stronger. In general, atmospheric dilution was lower in winter, contributing to the accumulation of air pollutants during stagnation conditions. Turbulences induced by traffic become a significant particle re-suspension mechanism, particularly during winter night time, when mixing height was lowest. This is evident by the high levels of CPM mass, mineral and road dust in winter overnight at the near-freeway sites located in urban Los Angeles, and to a lesser extent in Riverside. WSOC levels were higher in summer, with a similar diurnal profile with mineral and road dust, indicating that they either share common sources, or that WSOC may be adsorbed or absorbed onto the surfaces of these dust particles. In general, the contribution of inorganic ions to CPM mass was greater in the overnight sampling period at all sampling sites, suggesting that the prevailing meteorological conditions (lower temperature and higher relative humidity) favor the formation of these ions in the coarse mode. Nitrate, the most abundant CPM-bound inorganic species in this basin, is found to be predominantly formed by reactions with sea salt particles in summer. When the sea salt concentrations were low, the reaction with mineral dust particles and the condensation of ammonium nitrate on CPM surfaces also contributes to the formation of nitrate in the coarse mode.
Aerosol Science and Technology | 2013
Dongbin Wang; Winnie Kam; Kalam Cheung; Payam Pakbin; Constantinos Sioutas
A two-stage particle concentration enrichment system was developed to provide highly concentrated particles at low flow rates, for applications in areas such as toxicity studies of particulate matter (PM) as well as for increasing the signal-to-noise ratio in online particle sampling instruments. The current system is an extension of the Versatile Aerosol Concentration Enrichment System (VACES) developed at University of Southern California and operates by placing a second-stage miniature virtual impactor (VI) downstream of the VACES. Particles are sequentially enriched through each stage. Laboratory evaluations were conducted using various types of polydisperse particles to simulate typical ambient PM components as well as monodisperse polystyrene latex (PSL) particles. The systems configuration was tested by adjusting the intermediate flow rate, which is the intake flow of the second-stage VI (or minor flow of the first-stage VIs), for which 15 L/min was determined to be optimal in terms of maximizing the overall concentration enrichment. Particle size distributions before and after concentration enrichment were compared using a scanning mobility particle sizer. Overall, our results indicate that the sampled particles were relative consistently enriched by factors of 100–120 (i.e., a concentration enrichment efficiency 75–85% of the ideal value) based on both PM mass and number concentrations, and along with similar physical properties of the size distribution (i.e., mode, median). Continuous and time-integrated field tests using urban ambient PM also showed consistent enrichment factors (by roughly 100–120 times) for number and mass concentrations, black carbon, and PM-bound polycyclic aromatic hydrocarbons. Copyright 2013 American Association for Aerosol Research
Atmospheric Environment | 2011
Winnie Kam; Kalam Cheung; Nancy Daher; Constantinos Sioutas
Atmospheric Environment | 2011
Kalam Cheung; Nancy Daher; Winnie Kam; Martin M. Shafer; Zhi Ning; James J. Schauer; Constantinos Sioutas
Atmospheric Environment | 2012
Kalam Cheung; Michael R. Olson; Brandon Shelton; James J. Schauer; Constantinos Sioutas
Archive | 2010
Vijay Verma; Payam Pakbin; Kalam Cheung; Arthur K. Cho; James J. Schauer; Martin M. Shafer; Michael T. Kleinman; Constantinos Sioutas