Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kalifa Bojang is active.

Publication


Featured researches published by Kalifa Bojang.


The Lancet | 2010

Artesunate versus quinine in the treatment of severe falciparum malaria in African children (AQUAMAT): an open-label, randomised trial.

Arjen M. Dondorp; Caterina I. Fanello; Ilse C. E. Hendriksen; Ermelinda Gomes; Amir Seni; Kajal D. Chhaganlal; Kalifa Bojang; Rasaq Olaosebikan; Nkechinyere Anunobi; Kathryn Maitland; Esther Kivaya; Tsiri Agbenyega; Samuel Blay Nguah; Jennifer L. Evans; Samwel Gesase; Catherine Kahabuka; George Mtove; Behzad Nadjm; Jacqueline L. Deen; Juliet Mwanga-Amumpaire; Margaret Nansumba; Corine Karema; Noella Umulisa; Aline Uwimana; Olugbenga A. Mokuolu; Ot Adedoyin; Wahab Babatunde Rotimi Johnson; Antoinette Tshefu; Marie Onyamboko; Tharisara Sakulthaew

Summary Background Severe malaria is a major cause of childhood death and often the main reason for paediatric hospital admission in sub-Saharan Africa. Quinine is still the established treatment of choice, although evidence from Asia suggests that artesunate is associated with a lower mortality. We compared parenteral treatment with either artesunate or quinine in African children with severe malaria. Methods This open-label, randomised trial was undertaken in 11 centres in nine African countries. Children (<15 years) with severe falciparum malaria were randomly assigned to parenteral artesunate or parenteral quinine. Randomisation was in blocks of 20, with study numbers corresponding to treatment allocations kept inside opaque sealed paper envelopes. The trial was open label at each site, and none of the investigators or trialists, apart from for the trial statistician, had access to the summaries of treatment allocations. The primary outcome measure was in-hospital mortality, analysed by intention to treat. This trial is registered, number ISRCTN50258054. Findings 5425 children were enrolled; 2712 were assigned to artesunate and 2713 to quinine. All patients were analysed for the primary outcome. 230 (8·5%) patients assigned to artesunate treatment died compared with 297 (10·9%) assigned to quinine treatment (odds ratio [OR] stratified for study site 0·75, 95% CI 0·63–0·90; relative reduction 22·5%, 95% CI 8·1–36·9; p=0·0022). Incidence of neurological sequelae did not differ significantly between groups, but the development of coma (65/1832 [3·5%] with artesunate vs 91/1768 [5·1%] with quinine; OR 0·69 95% CI 0·49–0·95; p=0·0231), convulsions (224/2712 [8·3%] vs 273/2713 [10·1%]; OR 0·80, 0·66–0·97; p=0·0199), and deterioration of the coma score (166/2712 [6·1%] vs 208/2713 [7·7%]; OR 0·78, 0·64–0·97; p=0·0245) were all significantly less frequent in artesunate recipients than in quinine recipients. Post-treatment hypoglycaemia was also less frequent in patients assigned to artesunate than in those assigned to quinine (48/2712 [1·8%] vs 75/2713 [2·8%]; OR 0·63, 0·43–0·91; p=0·0134). Artesunate was well tolerated, with no serious drug-related adverse effects. Interpretation Artesunate substantially reduces mortality in African children with severe malaria. These data, together with a meta-analysis of all trials comparing artesunate and quinine, strongly suggest that parenteral artesunate should replace quinine as the treatment of choice for severe falciparum malaria worldwide. Funding The Wellcome Trust.


The Lancet | 2001

Efficacy of RTS,S/AS02 malaria vaccine against Plasmodium falciparum infection in semi-immune adult men in The Gambia: a randomised trial

Kalifa Bojang; Paul Milligan; Margaret Pinder; Laurence Vigneron; Ali Alloueche; Kent E. Kester; W. Ripley Ballou; David J. Conway; William H. H. Reece; Philip Gothard; Lawrence K. Yamuah; Martine Delchambre; Gerald Voss; Brian Greenwood; Adrian V. S. Hill; Keith P. W. J. McAdam; Nadia Tornieporth; Joe Cohen; Tom Doherty

BACKGROUND RTS,S/AS02 is a pre-erythrocytic malaria vaccine based on the circumsporozoite surface protein of Plasmodium falciparum fused to HBsAg, incorporating a new adjuvant (AS02). We did a randomised trial of the efficacy of RTS,S/AS02 against natural P. falciparum infection in semi-immune adult men in The Gambia. METHODS 306 men aged 18-45 years were randomly assigned three doses of either RTS,S/AS02 or rabies vaccine (control). Volunteers were given sulfadoxine/pyrimethamine 2 weeks before dose 3, and kept under surveillance throughout the malaria transmission season. Blood smears were collected once a week and whenever a volunteer developed symptoms compatible with malaria. The primary endpoint was time to first infection with P. falciparum. Analysis was per protocol. FINDINGS 250 men (131 in the RTS,S/AS02 group and 119 in the control group) received three doses of vaccine and were followed up for 15 weeks. RTS,S/AS02 was safe and well tolerated. P. falciparum infections occurred significantly earlier in the control group than the RTS,S/AS02 group (Wilcoxons test p=0.018). Vaccine efficacy, adjusted for confounders, was 34% (95% CI 8.0-53, p=0.014). Protection seemed to wane: estimated efficacy during the first 9 weeks of follow-up was 71% (46-85), but decreased to 0% (-52 to 34) in the last 6 weeks. Vaccination induced strong antibody responses to circumsporozoite protein and strong T-cell responses. Protection was not limited to the NF54 parasite genotype from which the vaccine was derived. 158 men received a fourth dose the next year and were followed up for 9 weeks; during this time, vaccine efficacy was 47% (4-71, p=0.037). INTERPRETATION RTS,S/AS02 is safe, immunogenic, and is the first pre-erythrocytic vaccine to show significant protection against natural P. falciparum infection.


The Lancet | 2008

Changes in malaria indices between 1999 and 2007 in The Gambia: a retrospective analysis

Serign J. Ceesay; Climent Casals-Pascual; Jamie Erskine; Samuel E Anya; Nancy O. Duah; Anthony J. Fulford; Sanie S. S. Sesay; Ismaela Abubakar; Samuel K. Dunyo; Omar Sey; Ayo Palmer; Malang Fofana; Tumani Corrah; Kalifa Bojang; Hilton Whittle; Brian Greenwood; David J. Conway

Summary Background Malaria is a major cause of morbidity and mortality in Africa. International effort and funding for control has been stepped up, with substantial increases from 2003 in the delivery of malaria interventions to pregnant women and children younger than 5 years in The Gambia. We investigated the changes in malaria indices in this country, and the causes and public-health significance of these changes. Methods We undertook a retrospective analysis of original records to establish numbers and proportions of malaria inpatients, deaths, and blood-slide examinations at one hospital over 9 years (January, 1999–December, 2007), and at four health facilities in three different administrative regions over 7 years (January, 2001–December, 2007). We obtained additional data from single sites for haemoglobin concentrations in paediatric admissions and for age distribution of malaria admissions. Findings From 2003 to 2007, at four sites with complete slide examination records, the proportions of malaria-positive slides decreased by 82% (3397/10861 in 2003 to 337/6142 in 2007), 85% (137/1259 to 6/368), 73% (3664/16932 to 666/11333), and 50% (1206/3304 to 336/1853). At three sites with complete admission records, the proportions of malaria admissions fell by 74% (435/2530 to 69/1531), 69% (797/2824 to 89/1032), and 27% (2204/4056 to 496/1251). Proportions of deaths attributed to malaria in two hospitals decreased by 100% (seven of 115 in 2003 to none of 117 in 2007) and 90% (22/122 in 2003 to one of 58 in 2007). Since 2004, mean haemoglobin concentrations for all-cause admissions increased by 12 g/L (85 g/L in 2000–04 to 97 g/L in 2005–07), and mean age of paediatric malaria admissions increased from 3·9 years (95% CI 3·7–4·0) to 5·6 years (5·0–6·2). Interpretation A large proportion of the malaria burden has been alleviated in The Gambia. Our results encourage consideration of a policy to eliminate malaria as a public-health problem, while emphasising the importance of accurate and continuous surveillance. Funding UK Medical Research Council.


Nature Genetics | 2014

Reappraisal of known malaria resistance loci in a large multicenter study

Kirk A. Rockett; Geraldine M. Clarke; Kathryn Fitzpatrick; Christina Hubbart; Anna Jeffreys; Kate Rowlands; Rachel Craik; Muminatou Jallow; David J. Conway; Kalifa Bojang; Margaret Pinder; Stanley Usen; Fatoumatta Sisay-Joof; Giorgio Sirugo; Ousmane Toure; Mahamadou A. Thera; Salimata Konate; Sibiry Sissoko; Amadou Niangaly; Belco Poudiougou; V. Mangano; Edith C. Bougouma; Sodiomon B. Sirima; David Modiano; Lucas Amenga-Etego; Anita Ghansah; Kwadwo A. Koram; Michael D. Wilson; Anthony Enimil; Jennifer L. Evans

Many human genetic associations with resistance to malaria have been reported, but few have been reliably replicated. We collected data on 11,890 cases of severe malaria due to Plasmodium falciparum and 17,441 controls from 12 locations in Africa, Asia and Oceania. We tested 55 SNPs in 27 loci previously reported to associate with severe malaria. There was evidence of association at P < 1 × 10−4 with the HBB, ABO, ATP2B4, G6PD and CD40LG loci, but previously reported associations at 22 other loci did not replicate in the multicenter analysis. The large sample size made it possible to identify authentic genetic effects that are heterogeneous across populations or phenotypes, with a striking example being the main African form of G6PD deficiency, which reduced the risk of cerebral malaria but increased the risk of severe malarial anemia. The finding that G6PD deficiency has opposing effects on different fatal complications of P. falciparum infection indicates that the evolutionary origins of this common human genetic disorder are more complex than previously supposed.


Nature Genetics | 2009

Genome-wide and fine-resolution association analysis of malaria in West Africa.

Muminatou Jallow; Yik-Ying Teo; Kerrin S. Small; Kirk A. Rockett; Panos Deloukas; Taane G. Clark; Katja Kivinen; Kalifa Bojang; David J. Conway; Margaret Pinder; Giorgio Sirugo; Fatou Sisay-Joof; Stanley Usen; Sarah Auburn; Suzannah Bumpstead; Susana Campino; Alison J. Coffey; Andrew Dunham; Andrew E. Fry; Angela Green; Rhian Gwilliam; Sarah Hunt; Michael Inouye; Anna Jeffreys; Alieu Mendy; Aarno Palotie; Simon Potter; Jiannis Ragoussis; Jane Rogers; Kate Rowlands

We report a genome-wide association (GWA) study of severe malaria in The Gambia. The initial GWA scan included 2,500 children genotyped on the Affymetrix 500K GeneChip, and a replication study included 3,400 children. We used this to examine the performance of GWA methods in Africa. We found considerable population stratification, and also that signals of association at known malaria resistance loci were greatly attenuated owing to weak linkage disequilibrium (LD). To investigate possible solutions to the problem of low LD, we focused on the HbS locus, sequencing this region of the genome in 62 Gambian individuals and then using these data to conduct multipoint imputation in the GWA samples. This increased the signal of association, from P = 4 × 10−7 to P = 4 × 10−14, with the peak of the signal located precisely at the HbS causal variant. Our findings provide proof of principle that fine-resolution multipoint imputation, based on population-specific sequencing data, can substantially boost authentic GWA signals and enable fine mapping of causal variants in African populations.


Nature Medicine | 2000

A principal target of human immunity to malaria identified by molecular population genetic and immunological analyses

David J. Conway; David R. Cavanagh; Kazuyuki Tanabe; Cally Roper; Zsuzsanna S. Mikes; Naoko Sakihama; Kalifa Bojang; Ayoade M. J. Oduola; Peter G. Kremsner; David E. Arnot; Brian Greenwood; Jana S. McBride

New strategies are required to identify the most important targets of protective immunity in complex eukaryotic pathogens. Natural selection maintains allelic variation in some antigens of the malaria parasite Plasmodium falciparum. Analysis of allele frequency distributions could identify the loci under most intense selection. The merozoite surface protein 1 (Msp1) is the most-abundant surface component on the erythrocyte-invading stage of P. falciparum. Immunization with whole Msp1 has protected monkeys completely against homologous and partially against non-homologous parasite strains. The single-copy msp1 gene, of about 5 kilobases, has highly divergent alleles with stable frequencies in endemic populations. To identify the region of msp1 under strongest selection to maintain alleles within populations, we studied multiple intragenic sequence loci in populations in different regions of Africa and Southeast Asia. On both continents, the locus with the lowest inter-population variance in allele frequencies was block 2, indicating selection in this part of the gene. To test the hypothesis of immune selection, we undertook a large prospective longitudinal cohort study. This demonstrated that serum IgG antibodies against each of the two most frequent allelic types of block 2 of the protein were strongly associated with protection from P. falciparum malaria.


The Lancet | 2000

Efficacy of artesunate plus pyrimethamine-sulphadoxine for uncomplicated malaria in Gambian children: a double-blind, randomised, controlled trial

Lorenz von Seidlein; Paul Milligan; Margaret Pinder; Kalifa Bojang; Chukwudi Anyalebechi; Roland Gosling; Rosalind Coleman; Justin Ifeanyichukwu Ude; Abubakar Sadiq; Manoj T. Duraisingh; David C. Warhurst; Ali Alloueche; Geoffrey Targett; Keith P. W. J. McAdam; Brian Greenwood; Gijs Walraven; Piero Olliaro; Tom Doherty

BACKGROUND Resistance to cheap effective antimalarial drugs, especially to pyrimethaminesulphadoxine (Fansidar), is likely to have a striking impact on childhood mortality in sub-Sharan Africa. The use of artesunate (artesunic acid) [corrected] in combination with pyrimethamine-sulphadoxine may delay or prevent resistance. We investigated the efficacy, safety, and tolerability of this combined treatment. METHODS We did a double-blind, randomised, placebo-controlled trial in The Gambia. 600 children with acute uncomplicated Plasmodium falciparum malaria, aged 6 months to 10 years, at five health centres were randomly assigned pyrimethaminesulphadoxine (25 mg/500 mg) with placebo; pyrimethamine-sulphadoxine plus one dose of artesunate (4mg/kg bodyweight); or pyrimethamine-sulphadoxine plus one dose 4 mg/kg bodyweight artesunate daily for 3 days. Children were visited at home each day after the start of treatment until parasitaemia had cleared. FINDINGS The combined treatment was well tolerated. No adverse reactions attributable to treatment were recorded. By day 1, only 178 (47%) of 381 children treated with artesunate were still parasitaemic, compared with 157 (81%) of 195 children in the pyrimethamine-sulphadoxine alone group (relative risk 1.7 [95% CI 1.5-2.0], p<0.001). Treatment-failure rates at day 14 were 3.1% in the pyrimethamine sulphadoxine alone group, and 3.7% in the one-dose artesunate group (risk difference -0.6% [-4.2 to 3.0]) and 1.6% in the three-dose group (1.5 [1.5-4.5], p=0.048). Symptoms resolved faster in children who received artesunate, but there was no additional benefit for three doses of artesunate over one dose. Children given artesunate were less likely to be gametocytaemic after treatment. INTERPRETATION The combined treatment was safe, well tolerated, and effective. The addition of artesunate to malaria treatment regimens in Africa results in lower gametocyte rates and may lower transmission rates.


Nature | 2015

The African Genome Variation Project shapes medical genetics in Africa

Deepti Gurdasani; Tommy Carstensen; Fasil Tekola-Ayele; Luca Pagani; Ioanna Tachmazidou; Konstantinos Hatzikotoulas; Savita Karthikeyan; Louise Iles; Martin Pollard; Ananyo Choudhury; Graham R. S. Ritchie; Yali Xue; Jennifer L. Asimit; Rebecca N. Nsubuga; Elizabeth H. Young; Cristina Pomilla; Katja Kivinen; Kirk Rockett; Anatoli Kamali; Ayo Doumatey; Gershim Asiki; Janet Seeley; Fatoumatta Sisay-Joof; Muminatou Jallow; Stephen Tollman; Ephrem Mekonnen; Rosemary Ekong; Tamiru Oljira; Neil Bradman; Kalifa Bojang

Given the importance of Africa to studies of human origins and disease susceptibility, detailed characterization of African genetic diversity is needed. The African Genome Variation Project provides a resource with which to design, implement and interpret genomic studies in sub-Saharan Africa and worldwide. The African Genome Variation Project represents dense genotypes from 1,481 individuals and whole-genome sequences from 320 individuals across sub-Saharan Africa. Using this resource, we find novel evidence of complex, regionally distinct hunter-gatherer and Eurasian admixture across sub-Saharan Africa. We identify new loci under selection, including loci related to malaria susceptibility and hypertension. We show that modern imputation panels (sets of reference genotypes from which unobserved or missing genotypes in study sets can be inferred) can identify association signals at highly differentiated loci across populations in sub-Saharan Africa. Using whole-genome sequencing, we demonstrate further improvements in imputation accuracy, strengthening the case for large-scale sequencing efforts of diverse African haplotypes. Finally, we present an efficient genotype array design capturing common genetic variation in Africa.


PLOS Medicine | 2004

A Randomised, Double-Blind, Controlled Vaccine Efficacy Trial of DNA/MVA ME-TRAP Against Malaria Infection in Gambian Adults

Vasee S. Moorthy; Egeruan B. Imoukhuede; Paul Milligan; Kalifa Bojang; Sheila M. Keating; Pauline Kaye; Margaret Pinder; Sarah C. Gilbert; Gijs Walraven; Brian Greenwood; Adrian V. S. Hill

Background Many malaria vaccines are currently in development, although very few have been evaluated for efficacy in the field. Plasmodium falciparum multiple epitope (ME)– thrombospondin-related adhesion protein (TRAP) candidate vaccines are designed to potently induce effector T cells and so are a departure from earlier malaria vaccines evaluated in the field in terms of their mechanism of action. ME-TRAP vaccines encode a polyepitope string and the TRAP sporozoite antigen. Two vaccine vectors encoding ME-TRAP, plasmid DNA and modified vaccinia virus Ankara (MVA), when used sequentially in a prime-boost immunisation regime, induce high frequencies of effector T cells and partial protection, manifest as delay in time to parasitaemia, in a clinical challenge model. Methods and Findings A total of 372 Gambian men aged 15–45 y were randomised to receive either DNA ME-TRAP followed by MVA ME-TRAP or rabies vaccine (control). Of these men, 296 received three doses of vaccine timed to coincide with the beginning of the transmission season (141 in the DNA/MVA group and 155 in the rabies group) and were followed up. Volunteers were given sulphadoxine/pyrimethamine 2 wk before the final vaccination. Blood smears were collected weekly for 11 wk and whenever a volunteer developed symptoms compatible with malaria during the transmission season. The primary endpoint was time to first infection with asexual P. falciparum. Analysis was per protocol. DNA ME-TRAP and MVA ME-TRAP were safe and well-tolerated. Effector T cell responses to a non-vaccine strain of TRAP were 50-fold higher postvaccination in the malaria vaccine group than in the rabies vaccine group. Vaccine efficacy, adjusted for confounding factors, was 10.3% (95% confidence interval, −22% to +34%; p = 0.49). Incidence of malaria infection decreased with increasing age and was associated with ethnicity. Conclusions DNA/MVA heterologous prime-boost vaccination is safe and highly immunogenic for effector T cell induction in a malaria-endemic area. But despite having produced a substantial reduction in liver-stage parasites in challenge studies of non-immune volunteers, this first generation T cell–inducing vaccine was ineffective at reducing the natural infection rate in semi-immune African adults.


PLOS Medicine | 2006

Manslaughter by fake artesunate in Asia - will Africa be next?

Paul N. Newton; Rose McGready; Facundo M. Fernández; Michael D. Green; Manuela Sunjio; Carinne Bruneton; Souly Phanouvong; Pascal Millet; Christopher J. M. Whitty; Ambrose Talisuna; Stephane Proux; Eva Maria Christophel; Grace Malenga; Pratap Singhasivanon; Kalifa Bojang; Harparkash Kaur; Kevin Palmer; Nicholas P. J. Day; Brian Greenwood; François Nosten; Nicholas J. White

Fake artesunate could compromise the hope that artemisinin-based combination therapy offers for malaria control in Africa and Asia.

Collaboration


Dive into the Kalifa Bojang's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Fanta Njie

Medical Research Council

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge