Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kalina Christoff is active.

Publication


Featured researches published by Kalina Christoff.


Proceedings of the National Academy of Sciences of the United States of America | 2009

Experience sampling during fMRI reveals default network and executive system contributions to mind wandering

Kalina Christoff; Alan M. Gordon; Jonathan Smallwood; Rachelle Smith; Jonathan W. Schooler

Although mind wandering occupies a large proportion of our waking life, its neural basis and relation to ongoing behavior remain controversial. We report an fMRI study that used experience sampling to provide an online measure of mind wandering during a concurrent task. Analyses focused on the interval of time immediately preceding experience sampling probes demonstrate activation of default network regions during mind wandering, a finding consistent with theoretical accounts of default network functions. Activation in medial prefrontal default network regions was observed both in association with subjective self-reports of mind wandering and an independent behavioral measure (performance errors on the concurrent task). In addition to default network activation, mind wandering was associated with executive network recruitment, a finding predicted by behavioral theories of off-task thought and its relation to executive resources. Finally, neural recruitment in both default and executive network regions was strongest when subjects were unaware of their own mind wandering, suggesting that mind wandering is most pronounced when it lacks meta-awareness. The observed parallel recruitment of executive and default network regions—two brain systems that so far have been assumed to work in opposition—suggests that mind wandering may evoke a unique mental state that may allow otherwise opposing networks to work in cooperation. The ability of this study to reveal a number of crucial aspects of the neural recruitment associated with mind wandering underscores the value of combining subjective self-reports with online measures of brain function for advancing our understanding of the neurophenomenology of subjective experience.


Trends in Cognitive Sciences | 2011

Meta-awareness, perceptual decoupling and the wandering mind

Jonathan W. Schooler; Jonathan Smallwood; Kalina Christoff; Todd C. Handy; Michael A. Sayette

Mind wandering (i.e. engaging in cognitions unrelated to the current demands of the external environment) reflects the cyclic activity of two core processes: the capacity to disengage attention from perception (known as perceptual decoupling) and the ability to take explicit note of the current contents of consciousness (known as meta-awareness). Research on perceptual decoupling demonstrates that mental events that arise without any external precedent (known as stimulus independent thoughts) often interfere with the online processing of sensory information. Findings regarding meta-awareness reveal that the mind is only intermittently aware of engaging in mind wandering. These basic aspects of mind wandering are considered with respect to the activity of the default network, the role of executive processes, the contributions of meta-awareness and the functionality of mind wandering.


NeuroImage | 2012

Evaluative and generative modes of thought during the creative process

Melissa Ellamil; Charles Dobson; Mark Beeman; Kalina Christoff

Psychological theories have suggested that creativity involves a twofold process characterized by a generative component facilitating the production of novel ideas and an evaluative component enabling the assessment of their usefulness. The present study employed a novel fMRI paradigm designed to distinguish between these two components at the neural level. Participants designed book cover illustrations while alternating between the generation and evaluation of ideas. The use of an fMRI-compatible drawing tablet allowed for a more natural drawing and creative environment. Creative generation was associated with preferential recruitment of medial temporal lobe regions, while creative evaluation was associated with joint recruitment of executive and default network regions and activation of the rostrolateral prefrontal cortex, insula, and temporopolar cortex. Executive and default regions showed positive functional connectivity throughout task performance. These findings suggest that the medial temporal lobe may be central to the generation of novel ideas and creative evaluation may extend beyond deliberate analytical processes supported by executive brain regions to include more spontaneous affective and visceroceptive evaluative processes supported by default and limbic regions. Thus, creative thinking appears to recruit a unique configuration of neural processes not typically used together during traditional problem solving tasks.


NeuroImage | 2015

The wandering brain: meta-analysis of functional neuroimaging studies of mind-wandering and related spontaneous thought processes.

Kieran C. R. Fox; R. Nathan Spreng; Melissa Ellamil; Jessica R. Andrews-Hanna; Kalina Christoff

The neural basis and cognitive functions of various spontaneous thought processes, particularly mind-wandering, are increasingly being investigated. Although strong links have been drawn between the occurrence of spontaneous thought processes and activation in brain regions comprising the default mode network (DMN), spontaneous thought also appears to recruit other, non-DMN regions just as consistently. Here we present the first quantitative meta-analysis of neuroimaging studies of spontaneous thought and mind-wandering in order to address the question of their neural correlates. Examining 24 functional neuroimaging studies of spontaneous thought processes, we conducted a meta-analysis using activation likelihood estimation (ALE). A number of key DMN areas showed consistent recruitment across studies, including medial prefrontal cortex, posterior cingulate cortex, medial temporal lobe, and bilateral inferior parietal lobule. Numerous non-DMN regions, however, were also consistently recruited, including rostrolateral prefrontal cortex, dorsal anterior cingulate cortex, insula, temporopolar cortex, secondary somatosensory cortex, and lingual gyrus. These meta-analytic results indicate that DMN activation alone is insufficient to adequately capture the neural basis of spontaneous thought; frontoparietal control network areas, and other non-DMN regions, appear to be equally central. We conclude that further progress in the cognitive and clinical neuroscience of spontaneous thought will therefore require a re-balancing of our view of the contributions of various regions and networks throughout the brain, and beyond the DMN.


Developmental Science | 2009

Neurocognitive development of relational reasoning

Eveline A. Crone; Carter Wendelken; Linda van Leijenhorst; Ryan D. Honomichl; Kalina Christoff; Silvia A. Bunge

Relational reasoning is an essential component of fluid intelligence, and is known to have a protracted developmental trajectory. To date, little is known about the neural changes that underlie improvements in reasoning ability over development. In this event-related functional magnetic resonance imaging (fMRI) study, children aged 8-12 and adults aged 18-25 performed a relational reasoning task adapted from Ravens Progressive Matrices. The task included three levels of relational reasoning demands: REL-0, REL-1, and REL-2. Children exhibited disproportionately lower accuracy than adults on trials that required integration of two relations (REL-2). Like adults, children engaged lateral prefrontal cortex (PFC) and parietal cortex during task performance; however, they exhibited different time courses and activation profiles, providing insight into their approach to the problems. As in prior studies, adults exhibited increased rostrolateral PFC (RLPFC) activation when relational integration was required (REL-2 > REL-1, REL-0). Children also engaged RLPFC most strongly for REL-2 problems at early stages of processing, but this differential activation relative to REL-1 trials was not sustained throughout the trial. These results suggest that the children recruited RLPFC while processing relations, but failed to use it to integrate across two relations. Relational integration is critical for solving a variety of problems, and for appreciating analogies; the current findings suggest that developmental improvements in this function rely on changes in the profile of engagement of RLPFC, as well as dorsolateral PFC and parietal cortex.


Brain Research | 2009

Prefrontal organization of cognitive control according to levels of abstraction

Kalina Christoff; Kamyar Keramatian; Alan M. Gordon; Rachelle Smith; Burkhard Mädler

The prefrontal cortex (PFC) plays a crucial role in cognitive control and higher mental functions by maintaining working memory representations of currently relevant information, thereby inducing a mindset that facilitates the processing of such information. Using fMRI, we examined how the human PFC implements mindsets for information at varying levels of abstraction. Subjects solved anagrams grouped into three kinds of blocks (concrete, moderately abstract, and highly abstract) according to the degree of abstraction of their solutions. Mindsets were induced by cuing subjects at the beginning of every block as to the degree of abstraction of solutions they should look for. Different levels of abstraction were matched for accuracy and reaction time, allowing us to examine the effects of varying abstraction in the absence of variations in cognitive complexity. Mindsets for concrete, moderately abstract, and highly abstract information were associated with stronger relative recruitment of ventrolateral, dorsolateral, and rostrolateral PFC regions, respectively, suggesting a functional topography whereby increasingly anterior regions are preferentially associated with representations of increasing abstraction. Rather than being a structural property of the neurons in different prefrontal subregions, this relative specialization may reflect one of the principles according to which lateral PFC adaptively codes and organizes task-relevant information.


Nature Reviews Neuroscience | 2016

Mind-wandering as spontaneous thought: a dynamic framework.

Kalina Christoff; Zachary C. Irving; Kieran C. R. Fox; R. Nathan Spreng; Jessica R. Andrews-Hanna

Most research on mind-wandering has characterized it as a mental state with contents that are task unrelated or stimulus independent. However, the dynamics of mind-wandering — how mental states change over time — have remained largely neglected. Here, we introduce a dynamic framework for understanding mind-wandering and its relationship to the recruitment of large-scale brain networks. We propose that mind-wandering is best understood as a member of a family of spontaneous-thought phenomena that also includes creative thought and dreaming. This dynamic framework can shed new light on mental disorders that are marked by alterations in spontaneous thought, including depression, anxiety and attention deficit hyperactivity disorder.


Trends in Cognitive Sciences | 2011

Specifying the self for cognitive neuroscience

Kalina Christoff; Diego Cosmelli; Dorothée Legrand; Evan Thompson

Cognitive neuroscience investigations of self-experience have mainly focused on the mental attribution of features to the self (self-related processing). In this paper, we highlight another fundamental, yet neglected, aspect of self-experience, that of being an agent. We propose that this aspect of self-experience depends on self-specifying processes, ones that implicitly specify the self by implementing a functional self/non-self distinction in perception, action, cognition and emotion. We describe two paradigmatic cases - sensorimotor integration and homeostatic regulation - and use the principles from these cases to show how cognitive control, including emotion regulation, is also self-specifying. We argue that externally directed, attention-demanding tasks, rather than suppressing self-experience, give rise to the self-experience of being a cognitive-affective agent. We conclude with directions for experimental work based on our framework.


Brain Research | 2012

Undirected thought: Neural determinants and correlates

Kalina Christoff

While goal-directed thinking has received the lions share of neuroscientific attention, its counterpart--the undirected thought flow that comes to mind unbidden and without effort--has remained largely on the sidelines of scientific research. Such undirected thought, however, forms a large part of our mental experience. The last decade of neuroscientific investigations marked a resurgence of interest and work into the neural basis of undirected thought. This article reviews the current status of the field and examines the research on the three most frequently discussed categories of undirected thought: spontaneous thought, stimulus-independent thought, and mind wandering. The terminology and paradigms for investigating undirected thought are still being developed, while research is gradually moving beyond strictly task- and rest-based paradigms and towards incorporating introspective first-person reports in order to better understand this phenomenon. It is impossible to say at this point that undirected thinking is preferentially linked to any one particular brain system. Although its connection to the default network has been disproportionately emphasized in the literature, other brain networks such as the executive system and the temporal lobe memory network appear to be equally involved. In addition to reviewing the literature, this article also presents novel findings regarding the functional connectivity between large-scale brain networks during mind wandering. These findings reveal the presence of positive functional connectivity between regions of the default and executive networks and negative functional connectivity between the default network and primary sensory cortices. Thus, the default and executive networks can closely cooperate in supporting undirected thought processes, and seem to do so at times when the primary sensory cortices are not busy with the processing of perceptual information from the external environment. This article is part of a Special Issue entitled The Cognitive Neuroscience of Thought.


Frontiers in Human Neuroscience | 2013

Dreaming as mind wandering: evidence from functional neuroimaging and first-person content reports

Kieran C. R. Fox; Savannah Nijeboer; Elizaveta Solomonova; G. William Domhoff; Kalina Christoff

Isolated reports have long suggested a similarity in content and thought processes across mind wandering (MW) during waking, and dream mentation during sleep. This overlap has encouraged speculation that both “daydreaming” and dreaming may engage similar brain mechanisms. To explore this possibility, we systematically examined published first-person experiential reports of MW and dreaming and found many similarities: in both states, content is largely audiovisual and emotional, follows loose narratives tinged with fantasy, is strongly related to current concerns, draws on long-term memory, and simulates social interactions. Both states are also characterized by a relative lack of meta-awareness. To relate first-person reports to neural evidence, we compared meta-analytic data from numerous functional neuroimaging (PET, fMRI) studies of the default mode network (DMN, with high chances of MW) and rapid eye movement (REM) sleep (with high chances of dreaming). Our findings show large overlaps in activation patterns of cortical regions: similar to MW/DMN activity, dreaming and REM sleep activate regions implicated in self-referential thought and memory, including medial prefrontal cortex (PFC), medial temporal lobe structures, and posterior cingulate. Conversely, in REM sleep numerous PFC executive regions are deactivated, even beyond levels seen during waking MW. We argue that dreaming can be understood as an “intensified” version of waking MW: though the two share many similarities, dreams tend to be longer, more visual and immersive, and to more strongly recruit numerous key hubs of the DMN. Further, whereas MW recruits fewer PFC regions than goal-directed thought, dreaming appears to be characterized by an even deeper quiescence of PFC regions involved in cognitive control and metacognition, with a corresponding lack of insight and meta-awareness. We suggest, then, that dreaming amplifies the same features that distinguish MW from goal-directed waking thought.

Collaboration


Dive into the Kalina Christoff's collaboration.

Top Co-Authors

Avatar

Matthew L. Dixon

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Caitlin Mills

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kamyar Keramatian

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Evan Thompson

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar

Melissa Ellamil

University of British Columbia

View shared research outputs
Researchain Logo
Decentralizing Knowledge