Kallayanee Chawengsaksophak
University of Queensland
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Kallayanee Chawengsaksophak.
Nature | 2005
Leigh Coultas; Kallayanee Chawengsaksophak; Janet Rossant
The intricate patterning processes that establish the complex vascular system during development depend on a combination of intrinsic pre-patterning and extrinsic responses to environmental parameters. Mutational studies in mice and fish have shown that the vascular system is highly sensitive to genetic disruption and have identified potential targets for therapeutic interventions. New insights into non-vascular roles of vascular endothelial growth factor and the requirement for endothelial cells in adult organs and stem-cell niches highlight possible side effects of anti-angiogenic therapy and the need for new targets.
Development | 2005
Dan Strumpf; Chai An Mao; Yojiro Yamanaka; Amy Ralston; Kallayanee Chawengsaksophak; Felix Beck; Janet Rossant
Blastocyst formation marks the segregation of the first two cell lineages in the mammalian preimplantation embryo: the inner cell mass (ICM) that will form the embryo proper and the trophectoderm (TE) that gives rise to the trophoblast lineage. Commitment to ICM lineage is attributed to the function of the two transcription factors, Oct4 (encoded by Pou5f1) and Nanog. However, a positive regulator of TE cell fate has not been described. The T-box protein eomesodermin (Eomes) and the caudal-type homeodomain protein Cdx2 are expressed in the TE, and both Eomes and Cdx2 homozygous mutant embryos die around the time of implantation. A block in early TE differentiation occurs in Eomes mutant blastocysts. However, Eomes mutant blastocysts implant, and Cdx2 and Oct4 expression are correctly restricted to the ICM TE. Blastocoel formation initiates in Cdx2 mutants but epithelial integrity is not maintained and embryos fail to implant. Loss of Cdx2 results in failure to downregulate Oct4 and Nanog in outer cells of the blastocyst and subsequent death of those cells. Thus, Cdx2 is essential for segregation of the ICM and TE lineages at the blastocyst stage by ensuring repression of Oct4 and Nanog in the TE.
Gut | 2003
Bonhomme C; Isabelle Duluc; Elisabeth Martin; Kallayanee Chawengsaksophak; Chenard Mp; Michèle Kedinger; Felix Beck; Jean-Noël Freund; Claire Domon-Dell
Background: During development, the homeobox gene Cdx2 exerts a homeotic function, providing the positional information necessary for correct specification of the midgut endoderm. This is illustrated by the non-neoplastic gastric-type heteroplasias present at birth in the pericaecal region of Cdx2+/− mice. Furthermore, intestinal expression of Cdx2 continues throughout life but diminishes in colorectal cancers compared with adjacent normal tissue, suggesting a role in tumorigenesis. Aim: To investigate the consequence of altered Cdx2 expression on colon tumour initiation and/or progression. Methods: Heterozygous Cdx2+/− mice were analysed for spontaneous malignant tumours and for tumour development after treatment with a DNA mutagen, azoxymethane. Results:Cdx2+/− mice did not spontaneously develop malignant tumours. After azoxymethane treatment, the gastric-like heteroplasias in the pericaecal region did not evolve into cancer indicating that they are not precancerous lesions. However, azoxymethane treated Cdx2+/− mice developed tumours specifically in the distal colon 12 weeks after azoxymethane treatment whereas no tumours were found in wild-type littermates at this stage. Histopathological and molecular analyses indicated that these tumours were invasive adenocarcinomas that recapitulated the malignant sequence observed in the majority of sporadic colorectal cancers in human. In addition, we found that the colonic epithelium was less sensitive to radiation induced apoptosis in Cdx2+/− than in wild-type mice. Conclusion: This study provides the first experimental evidence that Cdx2 is a tumour suppressor gene involved in cancer progression in the distal colon. This action in adults is functionally and geographically distinct from its homeotic role during gut development.
Journal of Clinical Investigation | 2007
Carrie J. Shawber; Yasuhiro Funahashi; Esther Francisco; Marina Vorontchikhina; Yukari Ido Kitamura; Stephanie A. Stowell; Valeriya Borisenko; Nikki Feirt; Simona Podgrabinska; Kazuko Shiraishi; Kallayanee Chawengsaksophak; Janet Rossant; Domenico Accili; Mihaela Skobe; Jan Kitajewski
The Notch family of cell surface receptors and its ligands are highly conserved proteins that regulate cell fate determination, including those involved in mammalian vascular development. We report that Notch induces VEGFR-3 expression in vitro in human endothelial cells and in vivo in mice. In vitro, Notch in complex with the DNA-binding protein CBF-1/suppressor of hairless/Lag1 (CSL) bound the VEGFR-3 promoter and transactivated VEGFR-3 specifically in endothelial cells. Through induction of VEGFR-3, Notch increased endothelial cell responsiveness to VEGF-C, promoting endothelial cell survival and morphological changes. In vivo, VEGFR-3 was upregulated in endothelial cells with active Notch signaling. Mice heterozygous for null alleles of both Notch1 and VEGFR-3 had significantly reduced viability and displayed midgestational vascular patterning defects analogous to Notch1 nullizygous embryos. We found that Notch1 and Notch4 were expressed in normal and tumor lymphatic endothelial cells and that Notch1 was activated in lymphatic endothelium of invasive mammary micropapillary carcinomas. These results demonstrate that Notch1 and VEGFR-3 interact genetically, that Notch directly induces VEGFR-3 in blood endothelial cells to regulate vascular development, and that Notch may function in tumor lymphangiogenesis.
Oncogene | 1998
Carol Wicking; Lisa A. Simms; Timothy Evans; Michael D. Walsh; Kallayanee Chawengsaksophak; Felix Beck; Georgia Chenevix-Trench; Joanne Young; Jeremy R. Jass; Barbara A. Leggett; Brandon J. Wainwright
The Cdx2 gene is one of three murine homologues of the Drosophila homeobox gene caudal. Mice heterozygous for a null mutation in Cdx2 exhibit a variable phenotype including tail abnormalities, stunted growth and a homeotic shift of vertebrae. Most strikingly, however, 90% of heterozygous mice were reported to develop multiple intestinal adenomatous polyps, most notably in the proximal colon (). These observations led us to propose that mutation of CDX2 may be involved in the genesis of some human colorectal tumours. A survey of DNA from 85 colorectal tumours revealed that one with extensive microsatellite instability (RER+ phenotype) has mutations in both alleles of CDX2. Both mutations occur in coding regions which contain repetitive elements and are consistent with those found in RER+ tumours.
Proceedings of the National Academy of Sciences of the United States of America | 2007
Jun K. Takeuchi; Heiko Lickert; Brent W. Bisgrove; Xin Sun; Masamichi Yamamoto; Kallayanee Chawengsaksophak; Hiroshi Hamada; H. Joseph Yost; Janet Rossant; Benoit G. Bruneau
Notch-mediated induction of Nodal at the vertebrate node is a critical step in initiating left–right (LR) asymmetry. In mice and zebrafish we show that Baf60c, a subunit of the Swi/Snf-like BAF chromatin remodeling complex, is essential for establishment of LR asymmetry. Baf60c knockdown mouse embryos fail to activate Nodal at the node and also have abnormal node morphology with mixing of crown and pit cells. In cell culture, Baf60c is required for Notch-dependent transcriptional activation and functions to stabilize interactions between activated Notch and its DNA-binding partner, RBP-J. Brg1 is also required for these processes, suggesting that BAF complexes are key components of nuclear Notch signaling. We propose a critical role for Baf60c in Notch-dependent transcription and LR asymmetry.
BioEssays | 2000
Felix Beck; Fred Tata; Kallayanee Chawengsaksophak
The gut of vertebrates exhibits a common anteroposterior regional differentiation. The role of homeobox genes in establishing this pattern is inferred by their sites of expression. It is suggested that the primary source of positional information is in the endoderm, which subsequently establishes a ‘dialogue’ with the surrounding visceral layer of the lateral plate mesoderm. This results in the anatomical and physiological specialization of the adult gut. BioEssays 22:431—441, 2000.
Biology of Reproduction | 2012
Kallayanee Chawengsaksophak; Terje Svingen; Ee Ting Ng; Trevor Allan Epp; Cassy M. Spiller; Charlotte Clark; Helen M. Cooper; Peter Koopman
ABSTRACT Disruptions in the regulatory pathways controlling sex determination and differentiation can cause disorders of sex development, often compromising reproductive function. Although extensive efforts have been channeled into elucidating the regulatory mechanisms controlling the many aspects of sexual differentiation, the majority of disorders of sex development phenotypes are still unexplained at the molecular level. In this study, we have analyzed the potential involvement of Wnt5a in sexual development and show in mice that Wnt5a is male-specifically upregulated within testicular interstitial cells at the onset of gonad differentiation. Homozygous deletion of Wnt5a affected sexual development in male mice, causing testicular hypoplasia and bilateral cryptorchidism despite the Leydig cells producing factors such as Hsd3b1 and Insl3. Additionally, Wnt5a-null embryos of both sexes showed a significant reduction in gonadal germ cell numbers, which was caused by aberrant primordial germ cell migration along the hindgut endoderm prior to gonadal colonization. Our results indicate multiple roles for Wnt5a during mammalian reproductive development and help to clarify further the etiology of Robinow syndrome (OMIM 268310), a disease previously linked to the WNT5A pathway.
Developmental Biology | 2003
Felix Beck; Kallayanee Chawengsaksophak; Jenni Luckett; Susan Giblett; Joseph Tucci; Jane Brown; Richard Poulsom; Rosemary Jeffery; Nicholas A. Wright
Inactivation of Cdx2 by homologous recombination results in the development of forestomach epithelium at ectopic sites in pericaecal areas of the midgut of heterozygote mice. Local factors subsequently result in the secondary induction of tissues exhibiting an orderly sequence of tissue types between the ectopic forestomach tissue and the surrounding colon. Clonal analysis of this secondarily generated tissue using Y chromosome painting in chimaeric mice indicates that once differentiated to express Cdx2, host colonic epithelium can only form small intestinal-type epithelium, while Cdx2 mutant cells give rise to a succession of gastric-type tissue but never to a small intestine morphology. Our results indicate a difference in potency between forestomach and midgut precursor endodermal cells.
Proceedings of the National Academy of Sciences of the United States of America | 2008
Yuan Wang; Akiko Yabuuchi; Shannon McKinney-Freeman; Danica M. K. Ducharme; Manas K. Ray; Kallayanee Chawengsaksophak; Trevor K. Archer; George Q. Daley
Cdx genes (Cdx1, Cdx2, and Cdx4) encode a family of caudal-related transcription factors that mediate anterior–posterior patterning during embryogenesis through Hox gene regulation. Homologues in the zebrafish have been shown to play key roles in blood formation. To define the role of Cdx genes during embryonic hematopoiesis in a mammalian system, we examined the hematopoietic potential of Cdx-deficient mouse embryonic stem cells (ESCs) in vitro and in vivo. Individual Cdx-deficient ESCs exhibited impaired embryonic hematopoietic progenitor formation and altered Hox gene expression, most notably for Cdx2 deficiency. A more severe hematopoietic defect was observed with compound Cdx deficiency than loss of function of any single Cdx gene. Reduced hematopoietic progenitor formation of ESCs deficient in multiple Cdx genes could be rescued by ectopic expression of Cdx4, concomitant with partially restored Hox gene expression. These results reveal an essential and partially redundant role for multiple Cdx genes during embryonic hematopoiesis in the mouse.