Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kalliopi Rantsiou is active.

Publication


Featured researches published by Kalliopi Rantsiou.


Applied and Environmental Microbiology | 2005

Culture-Dependent and -Independent Methods To Investigate the Microbial Ecology of Italian Fermented Sausages

Kalliopi Rantsiou; Rosalinda Urso; Lucilla Iacumin; Carlo Cantoni; Patrizia Cattaneo; Giuseppe Comi; Luca Cocolin

ABSTRACT In this study, the microbial ecology of three naturally fermented sausages produced in northeast Italy was studied by culture-dependent and -independent methods. By plating analysis, the predominance of lactic acid bacteria populations was pointed out, as well as the importance of coagulase-negative cocci. Also in the case of one fermentation, the fecal enterocci reached significant counts, highlighting their contribution to the particular transformation process. Yeast counts were higher than the detection limit (>100 CFU/g) in only one fermented sausage. Analysis of the denaturing gradient gel electrophoresis (DGGE) patterns and sequencing of the bands allowed profiling of the microbial populations present in the sausages during fermentation. The bacterial ecology was mainly characterized by the stable presence of Lactobacillus curvatus and Lactobacillus sakei, but Lactobacillus paracasei was also repeatedly detected. An important piece of evidence was the presence of Lactococcus garvieae, which clearly contributed in two fermentations. Several species of Staphylococcus were also detected. Regarding other bacterial groups, Bacillus sp., Ruminococcus sp., and Macrococcus caseolyticus were also identified at the beginning of the transformations. In addition, yeast species belonging to Debaryomyces hansenii, several Candida species, and Willopsis saturnus were observed in the DGGE gels. Finally, cluster analysis of the bacterial and yeast DGGE profiles highlighted the uniqueness of the fermentation processes studied.


Meat Science | 2005

Characterisation of naturally fermented sausages produced in the North East of Italy.

Giuseppe Comi; Rosalinda Urso; Lucilla Iacumin; Kalliopi Rantsiou; Patrizia Cattaneo; Carlo Cantoni; Luca Cocolin

In the Friuli Venezia Giulia region, in the North East of Italy, a traditional fermented sausage is produced without the use of microbial starters. It is characterized at the end of the ripening period by accentuated acidity, slight sourness and elastic, semi-hard consistency. In this study, three fermentations, carried out in different seasons (winter, spring and summer) were followed analyzing the microbiological, physicochemical and sensory aspects of this product. The sausages were characterized by an important microbial activity of lactic acid bacteria and micro/staphylococci that resulted in a product with a final pH of about 5.6-5.7. An interesting aspect was the high number of fecal enterococci that can play an important role in the definition of the organoleptic profile of the final product. No Listeria monocytogenes, Salmonella spp. and Staphylococcus aureus were ever isolated from the raw materials or the fermented sausages during the maturation, underlining the safety of this product. The final water activity of the product was 0.91-0.92. One hundred and fifty lactic acid bacteria were isolated and identified by molecular methods to understand which species were more predominant in the product. Lactobacillus curvatus and Lactobacillus sakei were the most numerous (54 and 64 strains isolated, respectively) and they were the only species common to all three fermentations. A cluster analysis of the profiles obtained from these strains after RAPD-PCR highlighted a population distribution that was fermentation-specific.


Applied and Environmental Microbiology | 2004

Study of the Ecology of Fresh Sausages and Characterization of Populations of Lactic Acid Bacteria by Molecular Methods

Luca Cocolin; Kalliopi Rantsiou; Lucilla Iacumin; Rosalinda Urso; Carlo Cantoni; Giuseppe Comi

ABSTRACT In this study, a polyphasic approach was used to study the ecology of fresh sausages and to characterize populations of lactic acid bacteria (LAB). The microbial profile of fresh sausages was monitored from the production day to the 10th day of storage at 4°C. Samples were collected on days 0, 3, 6, and 10, and culture-dependent and -independent methods of detection and identification were applied. Traditional plating and isolation of LAB strains, which were subsequently identified by molecular methods, and the application of PCR-denaturing gradient gel electrophoresis (DGGE) to DNA and RNA extracted directly from the fresh sausage samples allowed the study in detail of the changes in the bacterial and yeast populations during storage. Brochothrix thermosphacta and Lactobacillus sakei were the main populations present. In particular, B. thermosphacta was present throughout the process, as determined by both DNA and RNA analysis. Other bacterial species, mainly Staphylococcus xylosus, Leuconostoc mesenteroides, and L. curvatus, were detected by DGGE. Moreover, an uncultured bacterium and an uncultured Staphylococcus sp. were present, too. LAB strains isolated at day 0 were identified as Lactococcus lactis subsp. lactis, L. casei, and Enterococcus casseliflavus, and on day 3 a strain of Leuconostoc mesenteroides was identified. The remaining strains isolated belonged to L. sakei. Concerning the yeast ecology, only Debaryomyces hansenii was established in the fresh sausages. Capronia mansonii was initially present, but it was not detected after the first 3 days. At last, L. sakei isolates were characterized by randomly amplified polymorphic DNA PCR and repetitive DNA element PCR. The results obtained underlined how different populations took over at different steps of the process. This is believed to be the result of the selection of the particular population, possibly due to the low storage temperature employed.


International Journal of Food Microbiology | 2013

Culture independent methods to assess the diversity and dynamics of microbiota during food fermentation.

Luca Cocolin; Valentina Alessandria; Paola Dolci; Roberta Gorra; Kalliopi Rantsiou

Culture independent methods first appeared in the food microbiology field at the end of the 90s and since then they have been applied extensively. These methods do not rely on cultivation and target nucleic acids (DNA and RNA) to identify and follow the changes that occur in the main populations present in a specific ecosystem. The method that has most often been used as a culture independent method in food microbiology is denaturing gradient gel electrophoresis (DGGE). The number of papers dealing with DGGE grew exponentially in the late nineties and, by analysing the studies available in the literature, it is possible to describe a trend in the subjects that have been investigated. DGGE was first used as a tool to monitor the ecology of fermented food, such as fermented sausage, cheese and sourdough, and later it also showed its potential in microbial spoilage process. In the last few years, the main application of DGGE has been to study fermented food from Asia, Africa and South America. The information collected using DGGE has made it possible to confirm the existing knowledge on food fermentation and spoilage. However, in some cases, new evidence that helps scientists to fully comprehend a specific microbial ecosystem has emerged. In this review, the roadmap of culture independent methods in food microbiology will be summarized, focusing on the DGGE technique. Examples of how this approach is useful to obtain a better understanding of microbial diversity are reported for several kinds of fermented food, such as fermented sausage, cheese and wine. The future of culture independent methods in food microbiology, with the increasing availability of next generation sequencing techniques, is also discussed.


Applied and Environmental Microbiology | 2002

Direct Identification in Food Samples of Listeria spp. and Listeria monocytogenes by Molecular Methods

Luca Cocolin; Kalliopi Rantsiou; Lucilla Iacumin; Carlo Cantoni; Giuseppe Comi

ABSTRACT A new molecular approach for the detection and identification of Listeria spp. and Listeria monocytogenes in food is presented here. The method is based on the PCR amplification of a fragment of the iap gene from the five species belonging to the genus and on the analysis of the PCR products obtained by denaturing gradient gel electrophoresis (DGGE). The protocol was first optimized by using strains from international collections. Based on the differences present in the sequences amplified, it was possible to obtain species-specific DGGE migration that allowed fast and easy identification of L. monocytogenes, L. innocua, L. welshimeri, L. seeligeri, and L. ivanovii. Moreover, for L. monocytogenes serotypes, partial differentiation was possible. The optimized protocol was used for identification of Listeria strains traditionally isolated from food and for direct detection and identification of Listeria members in food after an overnight enrichment. Identification of 48 food isolates and direct detection of Listeria spp. in 73 food samples show the potential of the method that can be used as a fast screening test to investigate the presence of Listeria spp. and L. monocytogenes in food.


Applied and Environmental Microbiology | 2004

Molecular Detection and Identification of Brettanomyces/Dekkera bruxellensis and Brettanomyces/Dekkera anomalus in Spoiled Wines

Luca Cocolin; Kalliopi Rantsiou; Lucilla Iacumin; Roberto Zironi; Giuseppe Comi

ABSTRACT In this paper we describe the development of a PCR protocol to specifically detect Brettanomyces bruxellensis and B. anomalus. Primers DB90F and DB394R, targeting the D1-D2 loop of the 26S rRNA gene, were able to produce amplicons only when the DNA from these two species were used. No amplification product was obtained when DNA from other Brettanomyces spp. or wine yeasts were used as the templates. The 305-bp product was subjected to restriction enzyme analysis with DdeI to differentiate between B. bruxellensis and B. anomalus, and each species could be identified on the basis of the different restriction profiles. After optimization of the method by using strains from international collections, wine isolates were tested with the method proposed. Total agreement between traditional identification and molecular identification was observed. The protocol developed was also used for direct detection of B. bruxellensis and B. anomalus in wines suspected to be spoiled by Brettanomyces spp. Application of culture-based and molecular methods led us to the conclusion that 8 of 12 samples were spoiled by B. bruxellensis. Results based on the application of molecular methods suggested that two of the eight positive samples had been infected more recently, since specific signals were obtained at both the DNA and RNA levels.


International Journal of Food Microbiology | 2008

Microbial dynamics of Castelmagno PDO, a traditional italian cheese, with a focus on lactic acid bacteria ecology

Paola Dolci; Valentina Alessandria; Kalliopi Rantsiou; Luca Rolle; Giuseppe Zeppa; Luca Cocolin

The dynamics of dominant microflora throughout the manufacture and ripening processes were evaluated in three batches of traditional Castelmagno PDO cheese. Milk, curd and cheese samples, at different stages during cheesemaking, were collected and subjected to culture-dependent and -independent analysis. Traditional plating and genetic identification of lactic acid bacteria (LAB) isolates, and PCR-DGGE analysis of V1 region of 16S rRNA gene were carried out. The collected samples were also monitored by HPLC for the presence of organic acids, sugars and ketones. LAB resulted to be the prevailing microflora in all production stages although enterococci, coagulase-negative cocci and yeasts also showed considerable viable counts probably related to the presence, in the dairy samples analysed, of free short-chain fatty acids detected by HPLC. Lactococcus lactis subsp. lactis was the species most frequently isolated during Castelmagno PDO manufacture, while Lactobacillus plantarum and Lactobacillus paracasei were isolated with the highest frequencies from ripened Castelmagno PDO cheese samples. Occasionally strains of Lactobacillus delbrueckii subsp. lactis, Lactobacillus coryniformis subsp. torquens and Lactobacillus casei were isolated. The results obtained on Castelmagno PDO microflora underlines a partial correspondence between culture-dependent method and DGGE analysis. Thus, in this study, it is highlighted once more the importance to combine molecular culture-independent approaches with classical microbiological methods for the study of complex environmental communities occurring in food matrices.


International Journal of Food Microbiology | 2008

Microflora of Feta cheese from four Greek manufacturers

Kalliopi Rantsiou; Rosalinda Urso; Paola Dolci; Giuseppe Comi; Luca Cocolin

The components of the microflora of four Feta cheeses, produced by different Greek manufacturers, were determined by culture dependent and independent techniques. Isolates from microbiological media were first grouped by Polymerase Chain Reaction-Denaturing Gradient Gel Electrophoresis (PCR-DGGE) and then representatives of each DGGE group were sequenced for identification purposes. DNA and RNA, extracted directly from the cheese, were subjected to PCR-DGGE. Moreover, Feta cheeses were subjected to FISH analysis in order to identify viable bacterial populations. The microbial ecology, as represented by the Lactic Acid Bacteria (LAB) and yeast populations, was different for the four cheeses. The main LAB species isolated were Lactobacillus plantarum, Lactobacillus brevis, Lactobacillus coryniformis and Lactobacillus fermentum. However, some inconsistencies were observed between the results obtained with the culture dependent and the culture independent approach. In the case of the yeasts, the results obtained by PCR-DGGE compared very well with those obtained by the conventional microbiological analysis and the main species found were Kluyveromyces lactis, Pichia fermentans and C. zeylanoides. FISH analysis highlighted viable but not culturable populations of Streptococcus thermophilus and Lactococcus spp. RAPD-PCR performed on the L. plantarum isolates revealed a cheese specific distribution and a temperature dependent clustering.


Fems Yeast Research | 2008

Yeast biodiversity and dynamics during sweet wine production as determined by molecular methods

Rosalinda Urso; Kalliopi Rantsiou; Paola Dolci; Luca Rolle; Giuseppe Comi; Luca Cocolin

In this study we investigated yeast biodiversity and dynamics during the production of a sweet wine obtained from dried grapes. Two wineries were selected in the Collio region and grapes, grape juices and wines during fermentations were analyzed by culture-dependent methods (plating on WLN medium) and culture-independent methods (PCR-DGGE). Moreover, the capability of the Saccharomyces cerevisiae starter cultures to take over the fermentation was assessed by RAPD-PCR. On WLN agar several species of non-Saccharomyces yeasts (Hanseniaspora, Metschnikowia, Pichia, Candida, Torulaspora and Debaryomyces), but also strains of S. cerevisiae, were isolated. After inoculation of the starter cultures, only colonies typical of S. cerevisiae were observed. Using PCR-DGGE, the great biodiversity of moulds on the grapes was underlined, both at the DNA and RNA level, while the yeast contribution started to become important only in the musts. Here, bands belonging to species of Candida zemplinina and Hanseniaspora uvarum were visible. Lastly, when the S. cerevisiae isolates were compared by RAPD-PCR, it was determined that only in one of the fermentations followed, the inoculated strain conducted the alcoholic fermentation. In the second fermentation, the starter culture was not able to promptly implant and other populations of S. cerevisiae could be isolated, most likely contributing to the final characteristics of the sweet wine produced.


Applied and Environmental Microbiology | 2012

Candida zemplinina can reduce acetic acid produced by Saccharomyces cerevisiae in sweet wine fermentations

Kalliopi Rantsiou; Paola Dolci; Simone Giacosa; Fabrizio Torchio; Rosanna Tofalo; Sandra Torriani; Giovanna Suzzi; Luca Rolle; Luca Cocolin

ABSTRACT In this study we investigated the possibility of using Candida zemplinina, as a partner of Saccharomyces cerevisiae, in mixed fermentations of must with a high sugar content, in order to reduce its acetic acid production. Thirty-five C. zemplinina strains, which were isolated from different geographic regions, were molecularly characterized, and their fermentation performances were determined. Five genetically different strains were selected for mixed fermentations with S. cerevisiae. Two types of inoculation were carried out: coinoculation and sequential inoculation. A balance between the two species was generally observed for the first 6 days, after which the levels of C. zemplinina started to decrease. Relevant differences were observed concerning the consumption of sugars, the ethanol and glycerol content, and acetic acid production, depending on which strain was used and which type of inoculation was performed. Sequential inoculation led to the reduction of about half of the acetic acid content compared to the pure S. cerevisiae fermentation, but the ethanol and glycerol amounts were also low. A coinoculation with selected combinations of S. cerevisiae and C. zemplinina resulted in a decrease of ∼0.3 g of acetic acid/liter, while maintaining high ethanol and glycerol levels. This study demonstrates that mixed S. cerevisiae and C. zemplinina fermentation could be applied in sweet wine fermentation to reduce the production of acetic acid, connected to the S. cerevisiae osmotic stress response.

Collaboration


Dive into the Kalliopi Rantsiou's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Fabrizio Torchio

Catholic University of the Sacred Heart

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge