Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kalman Toth is active.

Publication


Featured researches published by Kalman Toth.


Clinical Hemorheology and Microcirculation | 2012

Cardioprotection by resveratrol: A human clinical trial in patients with stable coronary artery disease

K. Magyar; Robert Halmosi; Anita Pálfi; Gergely Feher; Laszlo Czopf; A. Fulop; I. Battyany; Balazs Sumegi; Kalman Toth; Eszter Szabados

Several beneficial effects of resveratrol (RES), a natural antioxidant present in red wine have already been described. The aim of our study was to investigate if RES had a clinically measurable cardioprotective effect in patients after myocardial infarction. In this double-blind, placebo controlled trial 40 post-infarction Caucasian patients were randomized into two groups. One group received 10 mg RES capsule daily for 3 months. Systolic and diastolic left ventricular function, flow-mediated vasodilation (FMD), several laboratory and hemorheological parameters were measured before and after the treatment. Left ventricular ejection fraction showed an increasing tendency (ns) by RES treatment. However, left ventricular diastolic function was improved significantly (p < 0.01) by RES. A significant improvement in endothelial function measured by FMD was also observed (p < 0.05). Low-density lipoprotein (LDL) level significantly decreased (p < 0.05) in the RES treated group. Red blood cell deformability decreased and platelet aggregation increased significantly in the placebo group (p < 0.05), while resveratrol treatment has prevented these unfavourable changes. Concerning other measured parameters no significant changes were observed neither in placebo nor in RES group. Our results show that resveratrol improved left ventricle diastolic function, endothelial function, lowered LDL-cholesterol level and protected against unfavourable hemorheological changes measured in patients with coronary artery disease (CAD).


Clinical Hemorheology and Microcirculation | 2008

Plasma viscosity: a forgotten variable.

Gabor Kesmarky; Peter Kenyeres; Miklos Rabai; Kalman Toth

Evaluation of plasma viscosity has been underutilized in the clinical practice. Plasma viscosity is determined by water-content and macromolecular components. Plasma is a highly concentrated protein solution, therefore weak protein-protein interactions can play a role that is not characterized by electrophoresis. The effect of a protein on plasma viscosity depends on its molecular weight and structure. The less spheroid shape, the higher molecular weight, the higher aggregating capacity, and the higher temperature or pH sensitivity a protein has, the higher plasma viscosity results. Plasma is a Newtonian fluid, its viscosity does not depend on flow characteristics, therefore it is simple to measure, especially in capillary viscosimeters. Its normal value is 1.10-1.30 mPa s at 37 degrees C and independent of age and gender. The measurement has high stability and accuracy, thus little alterations may be pathologically important. Inflammations, tissue injuries resulting in plasma protein changes can increase its value with high sensitivity, though low specificity. It can increase in parallel with erythrocyte sedimentation rate (ESR), but it is not influenced by hematocrit (anemia, polycytemia), or time to analysis. Based on these favorable features, in 1942 plasma viscosity was recommended to substitute ESR. In hyperviscosity syndromes plasma viscosity is better in follow-up than ESR. In rheumatoid arthritis, its sensitivity and specificity are better than that of ESR or C-reactive protein. Plasma fibrinogen concentration and plasma viscosity are elevated in unstable angina pectoris and stroke and their higher values are associated with higher rate of major adverse clinical events. Elevation of plasma viscosity correlates to the progression of coronary and peripheral artery diseases. In conclusion, plasma viscosity should be measured routinely in medical practice.


Cardiovascular and Hematological Disorders - Drug Targets | 2007

Endoplasmic reticulum stress as a novel therapeutic target in heart diseases

Ambrus Toth; Philip Nickson; Adel Mandl; Mark L. Bannister; Kalman Toth; Peter Erhardt

The endoplasmic reticulum (ER) is a multifunctional organelle responsible for the synthesis and folding of proteins as well as calcium storage and signaling. Perturbations of ER function cause ER stress leading to the unfolded protein response (UPR), which includes inhibition of protein synthesis, protein refolding and clearance of misfolded proteins. The UPR aims at restoring cellular homeostasis, however, prolonged ER stress can trigger apoptosis. ER stress-induced apoptosis has been implicated in the pathogenesis of various diseases such as brain ischemia/reperfusion, neurodegeneration, diabetes and, most recently, myocardial infarction and heart failure. Initial events leading to UPR and apoptosis in the heart include protein oxidation and disturbed calcium handling upon ischemia/reperfusion, and forced protein synthesis during cardiac hypertrophy. While XBP-1 and ATF6-mediated induction of ER chaperones seems to protect the heart from ischemia/reperfusion injury, the PERK/ATF4/CHOP branch of the UPR might transmit proapoptotic signals. The precise mechanism of ER stress-induced cardiomyocyte apoptosis remains elusive, however, recent data suggest that the mitochondrial apoptotic machinery is recruited through the upregulation of Puma, a proapoptotic member of the Bcl-2 family. Importantly, suppression of Puma activity prevented both ER stress and ischemia/reperfusion-induced cardiomyocyte loss, highlighting the ER stress pathways as potential therapeutic targets in cardiovascular diseases.


The Lancet | 2017

Clinical efficacy and safety of achieving very low LDL-cholesterol concentrations with the PCSK9 inhibitor evolocumab: a prespecified secondary analysis of the FOURIER trial

Robert P. Giugliano; Terje R. Pedersen; Jeong Gun Park; Gaetano M. De Ferrari; Zbigniew Gaciong; Ceska R; Kalman Toth; Ioanna Gouni-Berthold; Jose Lopez-Miranda; François Schiele; François Mach; Brian R. Ott; Estella Kanevsky; Armando Lira Pineda; Ransi Somaratne; Scott M. Wasserman; Anthony Keech; Peter Sever; Marc S. Sabatine

BACKGROUND LDL cholesterol is a well established risk factor for atherosclerotic cardiovascular disease. How much one should or safely can lower this risk factor remains debated. We aimed to explore the relationship between progressively lower LDL-cholesterol concentrations achieved at 4 weeks and clinical efficacy and safety in the FOURIER trial of evolocumab, a monoclonal antibody to proprotein convertase subtilisin-kexin type 9 (PCSK9). METHODS In this prespecified secondary analysis of 25 982 patients from the randomised FOURIER trial, the relationship between achieved LDL-cholesterol concentration at 4 weeks and subsequent cardiovascular outcomes (primary endpoint was the composite of cardiovascular death, myocardial infarction, stroke, coronary revascularisation, or unstable angina; key secondary endpoint was the composite of cardiovascular death, myocardial infarction, or stroke) and ten prespecified safety events of interest was examined over a median of 2·2 years of follow-up. We used multivariable modelling to adjust for baseline factors associated with achieved LDL cholesterol. This trial is registered with ClinicalTrials.gov, number NCT01764633. FINDINGS Between Feb 8, 2013, and June 5, 2015, 27 564 patients were randomly assigned a treatment in the FOURIER study. 1025 (4%) patients did not have an LDL cholesterol measured at 4 weeks and 557 (2%) had already had a primary endpoint event or one of the ten prespecified safety events before the week-4 visit. From the remaining 25 982 patients (94% of those randomly assigned) 13 013 were assigned evolocumab and 12 969 were assigned placebo. 2669 (10%) of 25 982 patients achieved LDL-cholesterol concentrations of less than 0·5 mmol/L, 8003 (31%) patients achieved concentrations between 0·5 and less than 1·3 mmol/L, 3444 (13%) patients achieved concentrations between 1·3 and less than 1·8 mmol/L, 7471 (29%) patients achieved concentrations between 1·8 to less than 2·6 mmol/L, and 4395 (17%) patients achieved concentrations of 2·6 mmol/L or higher. There was a highly significant monotonic relationship between low LDL-cholesterol concentrations and lower risk of the primary and secondary efficacy composite endpoints extending to the bottom first percentile (LDL-cholesterol concentrations of less than 0·2 mmol/L; p=0·0012 for the primary endpoint, p=0·0001 for the secondary endpoint). Conversely, no significant association was observed between achieved LDL cholesterol and safety outcomes, either for all serious adverse events or any of the other nine prespecified safety events. INTERPRETATION There was a monotonic relationship between achieved LDL cholesterol and major cardiovascular outcomes down to LDL-cholesterol concentrations of less than 0·2 mmol/L. Conversely, there were no safety concerns with very low LDL-cholesterol concentrations over a median of 2·2 years. These data support further LDL-cholesterol lowering in patients with cardiovascular disease to well below current recommendations. FUNDING Amgen.


Clinical Neuropharmacology | 2002

In vitro antioxidant properties of pentoxifylline, piracetam, and vinpocetine.

Beata Horvath; Zsolt Marton; Robert Halmosi; Tamas Alexy; László Szapáry; Judit Vekasi; Zsolt Biro; Tamas Habon; Gabor Kesmarky; Kalman Toth

Oxygen-free radicals play an important role in several physiologic and pathophysiologic processes. In pathologic circumstances, they can modify and damage biologic systems. Because oxygen-free radicals are involved in a wide range of diseases (cerebrovascular, cardiovascular, etc.), scavenging these radicals should be considered as an important therapeutic approach. In our in vitro study, we investigated the antioxidant capacity of three drugs: pentoxiphylline (Sigma Aldrich, St. Louis, MO, USA) piracetam (Sigma Aldrich), and vinpocetine (Richter Gedeon RT, Budapest, Hungary). Phenazine methosulphate was applied to generate free radicals, increasing red blood cell rigidity. Filtration technique and potassium leaking were used to detect the cellular damage and the scavenging effect of the examined drugs. According to our results, at human therapeutic serum concentration, only vinpocetine (Richter Gedeon RT) had significant (p < 0.01) scavenging activity with a protective effect that increased further at higher concentrations. Pentoxiphylline (Sigma Aldrich) and piracetam (Sigma Aldrich) did not have significant antioxidant capacity at therapeutic concentrations, but increasing their concentrations (pentoxiphylline at 100-times, and piracetam at 10-times higher concentrations) led to a significant (p < 0.01) scavenger effect. Our findings suggest that this pronounced antioxidant effect of vinpocetine and even the milder scavenging capacity of pentoxiphylline and piracetam may be of value in the treatment of patients with cerebrovascular disorders, but merits further investigations.


Annals of Pharmacotherapy | 2005

Glycoprotein IIIA Gene (PIA) Polymorphism and Aspirin Resistance: Is There Any Correlation?

Elod Papp; Viktória Havasi; Judit Bene; Katalin Komlósi; Laszlo Czopf; Éva Erzsébet Magyar; Csaba Fehér; Gergely Feher; Beata Horvath; Zsolt Marton; Tamas Alexy; Tamas Habon; Levente Szabó; Kalman Toth; Béla Melegh

BACKGROUND: Platelet glycoprotein (GP) IIb/IIIa receptors play an inevitable role in platelet aggregation. The GP IIIa gene is polymorphic (PIA1/PIA2) and the presence of a PIA2 allele might be associated with an increased risk for acute coronary syndrome (ACS). OBJECTIVE: To examine the prevalence of the PIA2 allele in patients with ACS and in subjects with or without aspirin resistance. METHODS: The prevalence of the PIA2 allele was assessed in 158 patients with ACS and PIA2 compared with its prevalence in 199 healthy volunteers. The antiplatelet efficacy of aspirin was examined in all patients with ACS, as well as in 69 individuals who had suffered ischemic stroke and in 58 high-risk subjects without any known ischemic vascular events. RESULTS: PIA2 prevalence was significantly higher in patients with ACS (59/158) than in the control group (51/199; p < 0.05). Carriers of the PIA2 allele had a significantly higher risk of developing ACS, even after an adjustment to the risk factors (OR 5.74; 95% CI 1.75 to 18.8; p = 0.004). The occurrence of the PIA2 allele was significantly higher among patients with aspirin resistance than in subjects who demonstrated an appropriate response to the drug (allele frequencies, 0.21 vs 0.14; p < 0.05). All patients homozygous for the PIA2 allele had an inadequate platelet response to aspirin. CONCLUSIONS: Our results support the hypothesis that carriers of the PIA2 allele might have an increased risk for ACS. PIA2 homozygosity was associated with an inadequate response to aspirin therapy. Our data further suggest that patients with PIA2 allele homozygosity might benefit from antiplatelet therapy based on adenosine diphosphate antagonists throughout secondary treatment for prevention of ACS.


Cardiovascular Research | 2009

PARP inhibition delays transition of hypertensive cardiopathy to heart failure in spontaneously hypertensive rats

Eva Bartha; Izabella Solti; László Kereskai; János Lantos; Eniko Plozer; Klara Magyar; Eszter Szabados; Tamás Kálai; Kálmán Hideg; Robert Halmosi; Balazs Sumegi; Kalman Toth

AIMS Oxidative stress followed by abnormal signalling can play a critical role in the development of long-term, high blood pressure-induced cardiac remodelling in heart failure (HF). Since oxidative stress-induced poly(ADP-ribose)polymerase (PARP) activation and cell death have been observed in several experimental models, we investigated the possibility that inhibition of nuclear PARP improves cardiac performance and delays transition from hypertensive cardiopathy to HF in a spontaneously hypertensive rat (SHR) model of HF. METHODS AND RESULTS SHRs were divided into two groups: one received no treatment (SHR-C) and the other (SHR-L) received 5 mg/kg/day L-2286 (PARP-inhibitor) orally for 46 weeks. A third group was a normotensive age-matched control group (CFY) and a fourth was a normotensive age-matched group receiving L-2286 treatment 5 mg/kg/day (CFY+L). At the beginning of the study, systolic function was similar in both CFY and SHR groups. In the SHR-C group at the end of the study, eccentric hypertrophy with poor left ventricular (LV) systolic function was observed, while PARP inhibitor treatment preserved systolic LV function. Due to these favourable changes, the survival rate of SHRs was significantly improved (P < 0.01) by the administration of the PARP inhibitor (L-2286). The PARP inhibitor used did not affect the elevated blood pressure of SHR rats, but moderated the level of plasma-BNP (P < 0.01) and favourably influenced all the measured gravimetric parameters (P < 0.05) and the extent of myocardial fibrosis (P < 0.05). The inhibition of PARP increased the phosporylation of Akt-1/GSK-3beta (P < 0.01), ERK 1/2 (P < 0.01), and PKC epsilon (P < 0.01), and decreased the phosphorylation of JNK (P < 0.05), p-38 MAPK (P < 0.01), PKC pan betaII and PKC zeta/lambda (P < 0.01), and PKC alpha/betaII and delta (P < 0.05). CONCLUSION These data demonstrate that chronic inhibition of PARP induces long-term favourable changes in the most important signalling pathways related to oxidative stress. PARP inhibition also prevents remodelling, preserves systolic function, and delays transition of hypertensive cardiopathy to HF in SHRs.


Journal of Cardiovascular Pharmacology | 2005

Prevention of doxorubicin-induced acute cardiotoxicity by an experimental antioxidant compound.

Peter Deres; Robert Halmosi; Ambrus Toth; Krisztina Kovacs; Anita Pálfi; Tamas Habon; Laszlo Czopf; Tamás Kálai; Kálmán Hideg; Balazs Sumegi; Kalman Toth

Doxorubicin is a widely used anticancer agent, but its application is restricted by its cardiotoxic side effects. The current theory of its cardiotoxicity is based on free radical formation. The compound H-2545, having a 3-carboxamido-2,2,5,5-tetramethyl-2,5-dihydro-1H-pyrrole moiety, was reported to exhibit antioxidant properties and accumulate in cell membranes, scavenging free radicals at the site of formation. Therefore, we hypothesized that H-2545 could reduce the doxorubicin-induced acute deterioration of cardiac function. Langendorff-perfused rat hearts were treated with doxorubicin and/or H-2545, its metabolite H-2954, or dihydrolipoamide. High-energy phosphate levels, contractile function, lipid peroxidation, protein oxidation, and Akt phosphorylation were investigated. We also determined whether the antioxidants influenced doxorubicin toxicity on malignant cells. During perfusion with doxorubicin, the energetic and functional parameters of the myocardium were improved by adding H-2545. H-2545 significantly diminished doxorubicin-induced lipid and protein damage. On H-2545 treatment, the doxorubicin-triggered Akt phosphorylation was markedly reduced, whereas dihydrolipoamide had such an effect only at higher concentrations. H-2545 did not alter the anticancer effect of doxorubicin on malignant cell lines. We propose that the coadministration of the antioxidant H-2545 attenuates doxorubicin-induced acute cardiotoxicity without interfering with its anticancer effects. Prevention of the acute adverse effects of doxorubicin on myocardium may hinder the later development of cardiomyopathy.


Drugs & Aging | 2006

Aspirin resistance: possible roles of cardiovascular risk factors, previous disease history, concomitant medications and haemorrheological variables.

Gergely Feher; Katalin Koltai; Elod Papp; Balint Alkonyi; Alexander Solyom; Peter Kenyeres; Gabor Kesmarky; Laszlo Czopf; Kalman Toth

Background and objectiveRecent studies have described the incidence (approximately one in eight high-risk patients will experience a further atherothrombotic event over a 2-year period) of aspirin (acetylsalicylic acid) resistance and its possible background. The aim of this study was to compare the characteristics (risk profile, previous diseases, medications and haemorrheological variables) of patients in whom aspirin provided effective platelet inhibition with those in whom aspirin was not effective in providing platelet inhibition.Methods599 patients with chronic cardio- and cerebrovascular diseases (355 men, mean age 64 ±11 years; 244 women, mean age 63 ± 10 years) taking aspirin 100–325 mg/day were included in the study. Blood was collected between 8:00am and 9:00am from these patients after an overnight fast. The cardiovascular risk profiles, history of previous diseases, medication history and haemorrheological parameters of patients who responded to aspirin and those who did not were compared. Platelet and red blood cell (RBC) aggregation were measured by aggregometry, haematocrit by a microhaematocrit centrifuge, and plasma fibrinogen by Clauss’ method. Plasma and whole blood viscosities were measured using a capillary viscosimeter.ResultsCompared with aspirin-resistant patients, patients who demonstrated effective aspirin inhibition had a significantly lower plasma fibrinogen level (3.3 g/L vs 3.8 g/L; p < 0.05) and significantly lower RBC aggregation values (24.3 vs 28.2; p < 0.01). In addition, significantly more patients with effective aspirin inhibition were hypertensive (80% vs 62%; p < 0.05). Patients who had effective platelet aggregation were significantly more likely to be taking β-adrenoceptor antagonists (75% vs 55%; p < 0.05) and ACE inhibitors (70% vs 50%; p < 0.05), whereas patients with ineffective platelet aggregation were significantly more likely to be taking HMG-CoA reducíase inhibitors (statins) [52% vs 38%; p < 0.05]. Use of statins remained an independent predictor of aspirin resistance even after adjustment for risk factors and medication use (odds ratio 5.92; 95% CI 1.83, 16.9; p < 0.001).ConclusionsThe mechanisms underlying aspirin resistance are multifactorial. Higher fibrinogen concentrations increase RBC aggregation and can also result in increased platelet aggregation. The higher rate of hypertension in patients with effective platelet aggregation on aspirin could explain the differences in β-adrenoceptor antagonist and ACE inhibitor use between these patients and aspirin-resistant patients. Furthermore, an additive effect of these drugs may contribute to effective antiplatelet therapy. It is also possible that drug interactions with statins might reduce aspirin bioavailability and/or activity, thereby reducing platelet inhibition in aspirin-resistant patients.


Free Radical Biology and Medicine | 2003

Akt activation induced by an antioxidant compound during ischemia-reperfusion

Ambrus Toth; Robert Halmosi; Krisztina Kovacs; Peter Deres; Tamás Kálai; Kálmán Hideg; Kalman Toth; Balazs Sumegi

Molecular mechanisms of cardioprotection afforded by modified mexiletine compounds were investigated during ischemia-reperfusion (IR) in Langendorff perfused hearts. Rat hearts were subjected to a global 25 min ischemia followed by reperfusion, either untreated or treated with mexiletine, or three substituted mexiletine derivates (5 muM). A modified mexiletine derivative (H-2693) promoted best the recovery of myocardial energy metabolism (assessed by (31)P NMR spectroscopy) compared to untreated and mexiletine-treated hearts. H-2693 also preserved cardiac contractile function and attenuated the IR-induced lipid peroxidation (TBARS formation) and protein oxidation (carbonyl content). Western blot revealed that H-2693 propagated the phosphorylation of Akt (activation) and its downstream substrate glycogen synthase kinase-3beta (GSK-3beta, inactivation) compared to untreated IR. Parallel treatment with the phosphatidylinositol-3-kinase (upstream activator of Akt) inhibitor wortmannin (100 nM) abolished the beneficial effects of H-2693 on energetics and function, and reduced Akt and GSK-3beta phosphorylation. As a result of the antiapoptotic impacts of Akt activation, H-2693 decreased caspase-3 activity, which was neutralized by wortmannin. Here we first demonstrated that a free radical-entrapping compound could activate the prosurvival Akt pathway beyond its proven ability to scavenge reactive oxygen species. In conclusion, the favorable influence of H-2693 on signaling events during IR may have considerably contributed to its cardioprotective effect.

Collaboration


Dive into the Kalman Toth's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge