Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kalpana Balakrishnan is active.

Publication


Featured researches published by Kalpana Balakrishnan.


The Lancet | 2017

Estimates and 25-year trends of the global burden of disease attributable to ambient air pollution: an analysis of data from the Global Burden of Diseases Study 2015.

Aaron Cohen; Michael Brauer; Richard T. Burnett; H. Ross Anderson; Joseph Frostad; Kara Estep; Kalpana Balakrishnan; Bert Brunekreef; Lalit Dandona; Rakhi Dandona; Valery L. Feigin; Greg Freedman; Bryan Hubbell; Haidong Kan; Luke D. Knibbs; Yang Liu; Randall V. Martin; Lidia Morawska; C. Arden Pope; Hwashin Shin; Kurt Straif; Gavin Shaddick; Matthew L. Thomas; Rita Van Dingenen; Aaron van Donkelaar; Theo Vos; Christopher J. L. Murray; Mohammad H. Forouzanfar

Summary Background Exposure to ambient air pollution increases morbidity and mortality, and is a leading contributor to global disease burden. We explored spatial and temporal trends in mortality and burden of disease attributable to ambient air pollution from 1990 to 2015 at global, regional, and country levels. Methods We estimated global population-weighted mean concentrations of particle mass with aerodynamic diameter less than 2·5 μm (PM2·5) and ozone at an approximate 11 km × 11 km resolution with satellite-based estimates, chemical transport models, and ground-level measurements. Using integrated exposure–response functions for each cause of death, we estimated the relative risk of mortality from ischaemic heart disease, cerebrovascular disease, chronic obstructive pulmonary disease, lung cancer, and lower respiratory infections from epidemiological studies using non-linear exposure–response functions spanning the global range of exposure. Findings Ambient PM2·5 was the fifth-ranking mortality risk factor in 2015. Exposure to PM2·5 caused 4·2 million (95% uncertainty interval [UI] 3·7 million to 4·8 million) deaths and 103·1 million (90·8 million 115·1 million) disability-adjusted life-years (DALYs) in 2015, representing 7·6% of total global deaths and 4·2% of global DALYs, 59% of these in east and south Asia. Deaths attributable to ambient PM2·5 increased from 3·5 million (95% UI 3·0 million to 4·0 million) in 1990 to 4·2 million (3·7 million to 4·8 million) in 2015. Exposure to ozone caused an additional 254 000 (95% UI 97 000–422 000) deaths and a loss of 4·1 million (1·6 million to 6·8 million) DALYs from chronic obstructive pulmonary disease in 2015. Interpretation Ambient air pollution contributed substantially to the global burden of disease in 2015, which increased over the past 25 years, due to population ageing, changes in non-communicable disease rates, and increasing air pollution in low-income and middle-income countries. Modest reductions in burden will occur in the most polluted countries unless PM2·5 values are decreased substantially, but there is potential for substantial health benefits from exposure reduction. Funding Bill & Melinda Gates Foundation and Health Effects Institute.


Environmental Science & Technology | 2016

Ambient Air Pollution Exposure Estimation for the Global Burden of Disease 2013.

Michael Brauer; Greg Freedman; Joseph Frostad; Aaron van Donkelaar; Randall V. Martin; Frank Dentener; Rita Van Dingenen; Kara Estep; Heresh Amini; Joshua S. Apte; Kalpana Balakrishnan; Lars Barregard; David M. Broday; Valery L. Feigin; Santu Ghosh; Philip K. Hopke; Luke D. Knibbs; Yoshihiro Kokubo; Yang Liu; Stefan Ma; Lidia Morawska; José Luis Texcalac Sangrador; Gavin Shaddick; H. Ross Anderson; Theo Vos; Mohammad H. Forouzanfar; Richard T. Burnett; Aaron Cohen

Exposure to ambient air pollution is a major risk factor for global disease. Assessment of the impacts of air pollution on population health and evaluation of trends relative to other major risk factors requires regularly updated, accurate, spatially resolved exposure estimates. We combined satellite-based estimates, chemical transport model simulations, and ground measurements from 79 different countries to produce global estimates of annual average fine particle (PM2.5) and ozone concentrations at 0.1° × 0.1° spatial resolution for five-year intervals from 1990 to 2010 and the year 2013. These estimates were applied to assess population-weighted mean concentrations for 1990-2013 for each of 188 countries. In 2013, 87% of the worlds population lived in areas exceeding the World Health Organization Air Quality Guideline of 10 μg/m(3) PM2.5 (annual average). Between 1990 and 2013, global population-weighted PM2.5 increased by 20.4% driven by trends in South Asia, Southeast Asia, and China. Decreases in population-weighted mean concentrations of PM2.5 were evident in most high income countries. Population-weighted mean concentrations of ozone increased globally by 8.9% from 1990-2013 with increases in most countries-except for modest decreases in North America, parts of Europe, and several countries in Southeast Asia.


Annual Review of Public Health | 2014

Millions Dead: How Do We Know and What Does It Mean? Methods Used in the Comparative Risk Assessment of Household Air Pollution

Kirk R. Smith; Nigel Bruce; Kalpana Balakrishnan; Heather Adair-Rohani; John R. Balmes; Zoë Chafe; Mukesh Dherani; H. Dean Hosgood; Sumi Mehta; Daniel Pope; Eva Rehfuess

In the Comparative Risk Assessment (CRA) done as part of the Global Burden of Disease project (GBD-2010), the global and regional burdens of household air pollution (HAP) due to the use of solid cookfuels, were estimated along with 60+ other risk factors. This article describes how the HAP CRA was framed; how global HAP exposures were modeled; how diseases were judged to have sufficient evidence for inclusion; and how meta-analyses and exposure-response modeling were done to estimate relative risks. We explore relationships with the other air pollution risk factors: ambient air pollution, smoking, and secondhand smoke. We conclude with sensitivity analyses to illustrate some of the major uncertainties and recommendations for future work. We estimate that in 2010 HAP was responsible for 3.9 million premature deaths and ∼4.8% of lost healthy life years (DALYs), ranking it highest among environmental risk factors examined and one of the major risk factors of any type globally.


The Lancet Respiratory Medicine | 2014

Respiratory risks from household air pollution in low and middle income countries

Stephen B. Gordon; Nigel Bruce; Jonathan Grigg; Patricia L. Hibberd; Om Kurmi; Kin Bong Hubert Lam; Kevin Mortimer; Kwaku Poku Asante; Kalpana Balakrishnan; John R. Balmes; Naor Bar-Zeev; Michael N. Bates; Patrick N. Breysse; Sonia Buist; Zhengming Chen; Deborah Havens; Darby Jack; Surinder K. Jindal; Haidong Kan; Sumi Mehta; Peter P. Moschovis; Luke P. Naeher; Archana Patel; Rogelio Pérez-Padilla; Daniel Pope; Jamie Rylance; Sean Semple; William J. Martin

A third of the worlds population uses solid fuel derived from plant material (biomass) or coal for cooking, heating, or lighting. These fuels are smoky, often used in an open fire or simple stove with incomplete combustion, and result in a large amount of household air pollution when smoke is poorly vented. Air pollution is the biggest environmental cause of death worldwide, with household air pollution accounting for about 3·5-4 million deaths every year. Women and children living in severe poverty have the greatest exposures to household air pollution. In this Commission, we review evidence for the association between household air pollution and respiratory infections, respiratory tract cancers, and chronic lung diseases. Respiratory infections (comprising both upper and lower respiratory tract infections with viruses, bacteria, and mycobacteria) have all been associated with exposure to household air pollution. Respiratory tract cancers, including both nasopharyngeal cancer and lung cancer, are strongly associated with pollution from coal burning and further data are needed about other solid fuels. Chronic lung diseases, including chronic obstructive pulmonary disease and bronchiectasis in women, are associated with solid fuel use for cooking, and the damaging effects of exposure to household air pollution in early life on lung development are yet to be fully described. We also review appropriate ways to measure exposure to household air pollution, as well as study design issues and potential effective interventions to prevent these disease burdens. Measurement of household air pollution needs individual, rather than fixed in place, monitoring because exposure varies by age, gender, location, and household role. Women and children are particularly susceptible to the toxic effects of pollution and are exposed to the highest concentrations. Interventions should target these high-risk groups and be of sufficient quality to make the air clean. To make clean energy available to all people is the long-term goal, with an intermediate solution being to make available energy that is clean enough to have a health impact.


Journal of Exposure Science and Environmental Epidemiology | 2004

Exposure assessment for respirable particulates associated with household fuel use in rural districts of Andhra Pradesh, India

Kalpana Balakrishnan; Sankar Sambandam; Padmavathi Ramaswamy; Sumi Mehta; Kirk R. Smith

Indoor air pollution associated with combustion of solid fuels seems to be a major contributor to the national burden of disease in India, but relatively few quantitative exposure assessment studies are available. This study quantified the daily average concentrations of respirable particulates (50% cut-off at 4 μm) in 412 rural homes selected through stratified random sampling from three districts of Andhra Pradesh, India and recorded time activity data from 1400 individuals to reconstruct 24-h average exposures. The mean 24-h average concentrations ranged from 73 to 732 μg/m3 in gas- versus solid fuel-using households, respectively. Concentrations were significantly correlated with fuel type, kitchen type, and fuel quantity. The mean 24-h average exposures ranged from 80 to 573 μg/m3. Among solid fuel users, the mean 24-h average exposures were the highest for women cooks and were significantly different from men and children. Among women, exposures were the highest in the age group of 15–40 years (most likely to be involved in cooking or helping in cooking), while among men, exposures were highest in the age group of 65–80 years (most likely to be indoors). The data are being used to develop a model to predict quantitative categories of population exposure based on survey information on housing and fuel characteristics. This would facilitate the development of a regional exposure database and enable better estimation of health risks.


Annual Review of Public Health | 2013

Energy and Human Health

Kirk R. Smith; Howard Frumkin; Kalpana Balakrishnan; Colin Butler; Zoë Chafe; Ian Fairlie; Patrick L. Kinney; Tord Kjellstrom; Denise L. Mauzerall; Thomas E. McKone; Anthony J. McMichael; Mycle Schneider

Energy use is central to human society and provides many health benefits. But each source of energy entails some health risks. This article reviews the health impacts of each major source of energy, focusing on those with major implications for the burden of disease globally. The biggest health impacts accrue to the harvesting and burning of solid fuels, coal and biomass, mainly in the form of occupational health risks and household and general ambient air pollution. Lack of access to clean fuels and electricity in the worlds poor households is a particularly serious risk for health. Although energy efficiency brings many benefits, it also entails some health risks, as do renewable energy systems, if not managed carefully. We do not review health impacts of climate change itself, which are due mostly to climate-altering pollutants from energy systems, but do discuss the potential for achieving near-term health cobenefits by reducing certain climate-related emissions.


Global Health Action | 2012

Cooking practices, air quality, and the acceptability of advanced cookstoves in Haryana, India: an exploratory study to inform large-scale interventions

Rupak Mukhopadhyay; Sankar Sambandam; Ajay Pillarisetti; Darby Jack; Krishnendu Mukhopadhyay; Kalpana Balakrishnan; Mayur Vaswani; Michael N. Bates; Patrick L. Kinney; Narendra K. Arora; Kirk R. Smith

BACKGROUND In India, approximately 66% of households rely on dung or woody biomass as fuels for cooking. These fuels are burned under inefficient conditions, leading to household air pollution (HAP) and exposure to smoke containing toxic substances. Large-scale intervention efforts need to be informed by careful piloting to address multiple methodological and sociocultural issues. This exploratory study provides preliminary data for such an exercise from Palwal District, Haryana, India. METHODS Traditional cooking practices were assessed through semi-structured interviews in participating households. Philips and Oorja, two brands of commercially available advanced cookstoves with small blowers to improve combustion, were deployed in these households. Concentrations of particulate matter (PM) with a diameter <2.5 μm (PM2.5) and carbon monoxide (CO) related to traditional stove use were measured using real-time and integrated personal, microenvironmental samplers for optimizing protocols to evaluate exposure reduction. Qualitative data on acceptability of advanced stoves and objective measures of stove usage were also collected. RESULTS Twenty-eight of the thirty-two participating households had outdoor primary cooking spaces. Twenty households had liquefied petroleum gas (LPG) but preferred traditional stoves as the cost of LPG was higher and because meals cooked on traditional stoves were perceived to taste better. Kitchen area concentrations and kitchen personal concentrations assessed during cooking events were very high, with respective mean PM2.5 concentrations of 468 and 718 µg/m3. Twenty-four hour outdoor concentrations averaged 400 µg/m3. Twenty-four hour personal CO concentrations ranged between 0.82 and 5.27 ppm. The Philips stove was used more often and for more hours than the Oorja. CONCLUSIONS The high PM and CO concentrations reinforce the need for interventions that reduce HAP exposure in the aforementioned community. Of the two stoves tested, participants expressed satisfaction with the Philips brand as it met the local criteria for usability. Further understanding of how the introduction of an advanced stove influences patterns of household energy use is needed. The preliminary data provided here would be useful for designing feasibility and/or pilot studies aimed at intervention efforts locally and nationally.Background : In India, approximately 66% of households rely on dung or woody biomass as fuels for cooking. These fuels are burned under inefficient conditions, leading to household air pollution (HAP) and exposure to smoke containing toxic substances. Large-scale intervention efforts need to be informed by careful piloting to address multiple methodological and sociocultural issues. This exploratory study provides preliminary data for such an exercise from Palwal District, Haryana, India. Methods : Traditional cooking practices were assessed through semi-structured interviews in participating households. Philips and Oorja, two brands of commercially available advanced cookstoves with small blowers to improve combustion, were deployed in these households. Concentrations of particulate matter (PM) with a diameter <2.5 μm (PM2.5) and carbon monoxide (CO) related to traditional stove use were measured using real-time and integrated personal, microenvironmental samplers for optimizing protocols to evaluate exposure reduction. Qualitative data on acceptability of advanced stoves and objective measures of stove usage were also collected. Results : Twenty-eight of the thirty-two participating households had outdoor primary cooking spaces. Twenty households had liquefied petroleum gas (LPG) but preferred traditional stoves as the cost of LPG was higher and because meals cooked on traditional stoves were perceived to taste better. Kitchen area concentrations and kitchen personal concentrations assessed during cooking events were very high, with respective mean PM2.5 concentrations of 468 and 718 µg/m3. Twenty-four hour outdoor concentrations averaged 400 µg/m3. Twenty-four hour personal CO concentrations ranged between 0.82 and 5.27 ppm. The Philips stove was used more often and for more hours than the Oorja. Conclusions : The high PM and CO concentrations reinforce the need for interventions that reduce HAP exposure in the aforementioned community. Of the two stoves tested, participants expressed satisfaction with the Philips brand as it met the local criteria for usability. Further understanding of how the introduction of an advanced stove influences patterns of household energy use is needed. The preliminary data provided here would be useful for designing feasibility and/or pilot studies aimed at intervention efforts locally and nationally.


Environmental Health Perspectives | 2013

Health and household air pollution from solid fuel use: the need for improved exposure assessment.

Maggie L. Clark; Jennifer L. Peel; Kalpana Balakrishnan; Patrick N. Breysse; Steven N. Chillrud; Luke P. Naeher; Charles Rodes; Alan Vette; John Balbus

Background: Nearly 3 billion people worldwide rely on solid fuel combustion to meet basic household energy needs. The resulting exposure to air pollution causes an estimated 4.5% of the global burden of disease. Large variability and a lack of resources for research and development have resulted in highly uncertain exposure estimates. Objective: We sought to identify research priorities for exposure assessment that will more accurately and precisely define exposure–response relationships of household air pollution necessary to inform future cleaner-burning cookstove dissemination programs. Data Sources: As part of an international workshop in May 2011, an expert group characterized the state of the science and developed recommendations for exposure assessment of household air pollution. Synthesis: The following priority research areas were identified to explain variability and reduce uncertainty of household air pollution exposure measurements: improved characterization of spatial and temporal variability for studies examining both short- and long-term health effects; development and validation of measurement technology and approaches to conduct complex exposure assessments in resource-limited settings with a large range of pollutant concentrations; and development and validation of biomarkers for estimating dose. Addressing these priority research areas, which will inherently require an increased allocation of resources for cookstove research, will lead to better characterization of exposure–response relationships. Conclusions: Although the type and extent of exposure assessment will necessarily depend on the goal and design of the cookstove study, without improved understanding of exposure–response relationships, the level of air pollution reduction necessary to meet the health targets of cookstove interventions will remain uncertain. Citation: Clark ML, Peel JL, Balakrishnan K, Breysse PN, Chillrud SN, Naeher LP, Rodes CE, Vette AF, Balbus JM. 2013. Health and household air pollution from solid fuel use: the need for improved exposure assessment. Environ Health Perspect 121:1120–1128; http://dx.doi.org/10.1289/ehp.1206429


Energy | 2001

Exposure from cooking with biofuels: pollution monitoring and analysis for rural Tamil Nadu, India

Jyoti Parikh; Kalpana Balakrishnan; Vijay Laxmi; Haimanti Biswas

In this paper, statistical analysis to examine the links between pollution and the types of kitchen and fuels is carried out for rural houses by first monitoring the indoor air quality (IAQ) followed by regression analysis of 418 households in Tamil Nadu, India. Exposures to the chief cook (females, who are mainly involved in the cooking during monitoring) are measured with personal monitors. The result shows that the values of respirable particles (PM10) ranged from 500–2000 μg/m3 during a two-hour cooking period from burning biofuels. The range depends on the type of kitchen and fuel use. Stationary monitors, placed two metres away from the stove, also recorded similar concentrations. Thus, the individuals who stay inside the houses using biofuels also face high concentrations even if they are not cooking. They could be senior citizens, children or adult males. Thus, there are two major findings from this analysis. Improved house designs that pay attention to kitchen location and put up partitions should also be considered in the intervention portfolio. Secondly, the exposure is not limited to the cooks alone. The rest of the family in the vicinity is also exposed through a “passive cooking effect”.


Environmental Science & Technology | 2013

Cleaner Cooking Solutions to Achieve Health, Climate, and Economic Cobenefits

Susan C. Anenberg; Kalpana Balakrishnan; James Jetter; Omar Masera; Sumi Mehta; Jacob Moss; V. Ramanathan

Nearly half the worlds population must rely on solid fuels such as biomass (wood, charcoal, agricultural residues, and animal dung) and coal for household energy, burning them in inefficient open fires and stoves with inadequate ventilation. Household solid fuel combustion is associated with four million premature deaths annually; contributes to forest degradation, loss of habitat and biodiversity, and climate change; and hinders social and economic progress as women and children spend hours every day collecting fuel. Several recent studies, as well as key emerging national and international efforts, are making progress toward enabling wide-scale household adoption of cleaner and more efficient stoves and fuels. While significant challenges remain, these efforts offer considerable promise to save lives, improve forest sustainability, slow climate change, and empower women around the world.

Collaboration


Dive into the Kalpana Balakrishnan's collaboration.

Top Co-Authors

Avatar

Santu Ghosh

Sri Ramachandra University

View shared research outputs
Top Co-Authors

Avatar

Sankar Sambandam

Sri Ramachandra University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kirk R. Smith

University of California

View shared research outputs
Top Co-Authors

Avatar

Howard Hu

University of Toronto

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Priscilla Johnson

Sri Ramachandra University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge