Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kam C. Yeung is active.

Publication


Featured researches published by Kam C. Yeung.


Nature | 1999

Suppression of Raf-1 kinase activity and MAP kinase signalling by RKIP

Kam C. Yeung; Thomas Seitz; Shengfeng Li; Petra Janosch; Brian McFerran; Christian Kaiser; Frances Fee; Kostas D. Katsanakis; David W. Rose; Harald Mischak; John M. Sedivy; Walter Kolch

Raf-1 phosphorylates and activates MEK-1, a kinase that activates the extracellular signal regulated kinases (ERK). This kinase cascade controls the proliferation and differentiation of different cell types. Here we describe a Raf-1-interacting protein, isolated using a yeast two-hybrid screen. This protein inhibits the phosphorylation and activation of MEK by Raf-1 and is designated RKIP (Raf kinase inhibitor protein). In vitro, RKIP binds to Raf-1, MEK and ERK, but not to Ras. RKIP co-immunoprecipitates with Raf-1 and MEK from cell lysates and colocalizes with Raf-1 when examined by confocal microscopy. RKIP is not a substrate for Raf-1 or MEK, but competitively disrupts the interaction between these kinases. RKIP overexpression interferes with the activation of MEK and ERK, induction of AP-1-dependent reporter genes and transformation elicited by an oncogenically activated Raf-1 kinase. Downregulation of endogenous RKIP by expression of antisense RNA or antibody microinjection induces the activation of MEK-, ERK- and AP-1-dependent transcription. RKIP represents a new class of protein-kinase-inhibitor protein that regulates the activity of the Raf/MEK/ERK module.


Molecular and Cellular Biology | 2000

Mechanism of Suppression of the Raf/MEK/Extracellular Signal-Regulated Kinase Pathway by the Raf Kinase Inhibitor Protein

Kam C. Yeung; Petra Janosch; Brian McFerran; David W. Rose; Harald Mischak; John M. Sedivy; Walter Kolch

ABSTRACT We have recently identified the Raf kinase inhibitor protein (RKIP) as a physiological endogenous inhibitor of the Raf-1/MEK/extracellular signal-regulated kinase (ERK) pathway. RKIP interfered with MEK phosphorylation and activation by Raf-1, resulting in the suppression of both Raf-1-induced transformation and AP-1-dependent transcription. Here we report the molecular mechanism of RKIPs inhibitory function. RKIP can form ternary complexes with Raf-1, MEK, and ERK. However, whereas MEK and ERK can simultaneously associate with RKIP, Raf-1 binding to RKIP and that of MEK are mutually exclusive. RKIP is able to dissociate a Raf-1–MEK complex and behaves as a competitive inhibitor of MEK phosphorylation. Mapping of the binding domains showed that MEK and Raf-1 bind to overlapping sites in RKIP, whereas MEK and RKIP associate with different domains in Raf-1, and Raf-1 and RKIP bind to different sites in MEK. Both the Raf-1 and the MEK binding sites in RKIP need to be destroyed in order to relieve RKIP-mediated suppression of the Raf-1/MEK/ERK pathway, indicating that binding of either Raf-1 or MEK is sufficient for inhibition. The properties of RKIP reveal the specific sequestration of interacting components as a novel motif in the cells repertoire for the regulation of signaling pathways.


Molecular and Cellular Biology | 2001

Raf Kinase Inhibitor Protein Interacts with NF-κB-Inducing Kinase and TAK1 and Inhibits NF-κB Activation

Kam C. Yeung; David W. Rose; Amardeep S. Dhillon; Diane Yaros; Marcus Gustafsson; Devasis Chatterjee; Brian McFerran; James H. Wyche; Walter Kolch; John M. Sedivy

ABSTRACT The Raf kinase inhibitor protein (RKIP) acts as a negative regulator of the mitogen-activated protein (MAP) kinase (MAPK) cascade initiated by Raf-1. RKIP inhibits the phosphorylation of MAP/extracellular signal-regulated kinase 1 (MEK1) by Raf-1 by disrupting the interaction between these two kinases. We show here that RKIP also antagonizes the signal transduction pathways that mediate the activation of the transcription factor nuclear factor kappa B (NF-κB) in response to stimulation with tumor necrosis factor alpha (TNF-α) or interleukin 1 beta. Modulation of RKIP expression levels affected NF-κB signaling independent of the MAPK pathway. Genetic epistasis analysis involving the ectopic expression of kinases acting in the NF-κB pathway indicated that RKIP acts upstream of the kinase complex that mediates the phosphorylation and inactivation of the inhibitor of NF-κB (IκB). In vitro kinase assays showed that RKIP antagonizes the activation of the IκB kinase (IKK) activity elicited by TNF-α. RKIP physically interacted with four kinases of the NF-κB activation pathway, NF-κB-inducing kinase, transforming growth factor beta-activated kinase 1, IKKα, and IKKβ. This mode of action bears striking similarities to the interactions of RKIP with Raf-1 and MEK1 in the MAPK pathway. Emerging data from diverse organisms suggest that RKIP and RKIP-related proteins represent a new and evolutionarily highly conserved family of protein kinase regulators. Since the MAPK and NF-κB pathways have physiologically distinct roles, the function of RKIP may be, in part, to coordinate the regulation of these pathways.


Advances in Cancer Research | 2004

Raf-1 Kinase Inhibitor Protein: Structure, Function, Regulation of Cell Signaling, and Pivotal Role in Apoptosis

Golaun Odabaei; Devasis Chatterjee; Ali R. Jazirehi; Lee Goodglick; Kam C. Yeung; Benjamin Bonavida

The acquisition of resistance to conventional therapies such as radiation and chemotherapeutic drugs remains the major obstacle in the successful treatment of cancer patients. Tumor cells acquire resistance to apoptotic stimuli and it has been demonstrated that conventional therapies exert their cytotoxic activities primarily by inducing apoptosis in the cells. Resistance to radiation and chemotherapeutic drugs has led to the development of immunotherapy and gene therapy approaches with the intent of overcoming resistance to drugs and radiation as well as enhancing the specificity to eliminate tumor cells. However, cytotoxic lymphocytes primarily kill by apoptosis and, therefore, drug-resistant tumor cells may also be cross-resistant to immunotherapy. To evade apoptosis, tumor cells have adopted various mechanisms that interfere with the apoptotic signaling pathways and promote constitutive activation of cellular proliferation and survival pathways. Thus, modifications of the antiapoptotic genes in cancer cells are warranted for the effectiveness of conventional therapies as well as novel immunotherapeutic approaches. Such modifications will avert the resistant phenotype of the tumor cells and will render them susceptible to apoptosis. Current studies, both in vitro and preclinically in vivo, have been aimed at the modification and regulation of expression of apoptosis-related gene products and their activities. A novel protein designated Raf-1 kinase inhibitor protein (RKIP) has been partially characterized. RKIP is a member of the phosphatidylethanolamine-binding protein family. RKIP has been shown to disrupt the Raf-1-MEK1/2 [mitogen-activated protein kinase-ERK (extracellular signal-regulated kinase) kinase-1/2]-ERK1/2 and NF-kappaB signaling pathways, via physical interaction with Raf-1-MEK1/2 and NF-kappaB-inducing kinase or transforming growth factor beta-activated kinase-1, respectively, thereby abrogating the survival and antiapoptotic properties of these signaling pathways. In addition, RKIP has been shown to act as a signal modifier that enhances receptor signaling by inhibiting G protein-coupled receptor kinase-2. By regulating cell signaling, growth, and survival through its expression and activity, RKIP is considered to play a pivotal role in cancer, regulating apoptosis induced by drugs or immune-mediated stimuli. Overexpression of RKIP sensitizes tumor cells to chemotherapeutic drug-induced apoptosis. Also, induction of RKIP by drugs or anti-receptor antibodies sensitizes cancer cells to drug-induced apoptosis. In this review, we discuss the discovery, structure, function, and significance of RKIP in cancer.


Cancer Research | 2012

Polycomb Protein EZH2 Regulates Tumor Invasion via the Transcriptional Repression of the Metastasis Suppressor RKIP in Breast and Prostate Cancer

Gang Ren; Stavroula Baritaki; Himangi Marathe; Jingwei Feng; Sungdae Park; Sandy Beach; Peter S. Bazeley; Anwar B. Beshir; Gabriel Fenteany; Rohit Mehra; Stephanie Daignault; Fahd Al-Mulla; Evan T. Keller; Ben Bonavida; Ivana L. de la Serna; Kam C. Yeung

Epigenetic modifications such as histone methylation play an important role in human cancer metastasis. Enhancer of zeste homolog 2 (EZH2), which encodes the histone methyltransferase component of the polycomb repressive complex 2 (PRC2), is overexpressed widely in breast and prostate cancers and epigenetically silences tumor suppressor genes. Expression levels of the novel tumor and metastasis suppressor Raf-1 kinase inhibitor protein (RKIP) have been shown to correlate negatively with those of EZH2 in breast and prostate cell lines as well as in clinical cancer tissues. Here, we show that the RKIP/EZH2 ratio significantly decreases with the severity of disease and is negatively associated with relapse-free survival in breast cancer. Using a combination of loss- and gain-of-function approaches, we found that EZH2 negatively regulated RKIP transcription through repression-associated histone modifications. Direct recruitment of EZH2 and suppressor of zeste 12 (Suz12) to the proximal E-boxes of the RKIP promoter was accompanied by H3-K27-me3 and H3-K9-me3 modifications. The repressing activity of EZH2 on RKIP expression was dependent on histone deacetylase promoter recruitment and was negatively regulated upstream by miR-101. Together, our findings indicate that EZH2 accelerates cancer cell invasion, in part, via RKIP inhibition. These data also implicate EZH2 in the regulation of RKIP transcription, suggesting a potential mechanism by which EZH2 promotes tumor progression and metastasis.


Oncogene | 2008

Snail is a repressor of RKIP transcription in metastatic prostate cancer cells

Sandra M. Beach; Huihui Tang; Sungdae Park; Amardeep S. Dhillon; Evan T. Keller; Walter Kolch; Kam C. Yeung

Diminished expression of the metastasis suppressor protein RKIP was previously reported in a number of cancers. The underlying mechanism remains unknown. Here, we show that the expression of RKIP negatively correlates with that of Snail zinc-transcriptional repressor, a key modulator of normal and neoplastic epithelial–mesenchymal transition (EMT) program. With a combination of loss-of-function and gain-of-function approaches, we showed that Snail repressed the expression of RKIP in metastatic prostate cancer cell lines. The effect of Snail on RKIP was on the level of transcriptional initiation and mediated by a proximal E-box on the RKIP promoter. Our results therefore suggest that RKIP is a novel component of the Snail transcriptional regulatory network important for the progression and metastasis of cancer.


Oncogene | 2009

Inhibition of epithelial to mesenchymal transition in metastatic prostate cancer cells by the novel proteasome inhibitor, NPI-0052: pivotal roles of Snail repression and RKIP induction

S Baritaki; A Chapman; Kam C. Yeung; Demetrios A. Spandidos; Michael A. Palladino; Benjamin Bonavida

Metastasis is associated with the loss of epithelial features and the acquisition of mesenchymal characteristics and invasive properties by tumor cells, a process known as epithelial to mesenchymal transition (EMT). Snail expression, through nuclear factor (NF)-κB activation, is an EMT determinant. The proteasome inhibitor, NPI-0052, induces the metastasis tumor suppressor/immune surveillance cancer gene, Raf kinase inhibitor protein (RKIP), via NF-κB inhibition. We hypothesized that NPI-0052 may inhibit Snail expression and, consequently, the metastatic phenotype in DU-145 prostate cancer cells. Cell treatment with NPI-0052 induced E-cadherin and inhibited Snail expression and both tumor cell invasion and migration. Inhibition of Snail inversely correlated with the induction of RKIP. The underlying mechanism of NPI-0052-induced inhibition of the metastatic phenotype was corroborated by: (1) treatment with Snail siRNA in DU-145 inhibited EMT and, in contrast, overexpression of Snail in the nonmetastatic LNCaP cells induced EMT, (2) NPI-0052-induced repression of Snail via inhibition of NF-κB was corroborated by the specific NF-κB inhibitor DHMEQ and (3) RKIP overexpression mimicked NPI-0052 in the inhibition of Snail and EMT. These findings demonstrate, for the first time, the role of NPI-0052 in the regulation of EMT via inhibition of NF-κB and Snail and induction of RKIP.


Oncogene | 2005

RKIP downregulates B-Raf kinase activity in melanoma cancer cells.

Sungdae Park; Miranda L Yeung; Sandy Beach; Janiel M Shields; Kam C. Yeung

The Raf-MEK-ERK protein kinase cascade is a highly conserved signaling pathway that is pivotal in relaying environmental cues from the cell surface to the nucleus. Three Raf isoforms, which share great sequence and structure similarities, have been identified in mammalian cells. We have previously identified Raf kinase inhibitor protein (RKIP) as a negative regulator of the Raf-MEK-ERK signaling pathway by specifically binding to the Raf-1 isoform. We show here that RKIP also antagonizes kinase activity of the B-Raf isoform. Yeast two-hybrid and coimmunoprecipitation experiments indicated that RKIP specifically interacted with B-Raf. Ectopic expression of RKIP antagonized the kinase activity of B-Raf. We showed that the effects of RKIP on B-Raf functions were independent of its known inhibitory action on Raf-1. The expression levels of RKIP in melanoma cancer cell lines are low relative to primary melanocytes. Forced expression of RKIP partially reverted the oncogenic B-Raf kinase-transformed melanoma cancer cell line SK-Mel-28. The low expression of RKIP and its antagonistic action on B-Raf suggests that RKIP may play an important role in melanoma turmorgenesis.


Journal of Immunology | 2007

Regulation of Tumor Cell Sensitivity to TRAIL-Induced Apoptosis by the Metastatic Suppressor Raf Kinase Inhibitor Protein via Yin Yang 1 Inhibition and Death Receptor 5 Up-Regulation

Stavroula Baritaki; Alina Katsman; Devasis Chatterjee; Kam C. Yeung; Demetrios A. Spandidos; Benjamin Bonavida

Raf-1 kinase inhibitor protein (RKIP) has been implicated in the regulation of cell survival pathways and metastases, and is poorly expressed in tumors. We have reported that the NF-κB pathway regulates tumor resistance to apoptosis by the TNF-α family via inactivation of the transcription repressor Yin Yang 1 (YY1). We hypothesized that RKIP overexpression may regulate tumor sensitivity to death ligands via inhibition of YY1 and up-regulation of death receptors (DRs). The TRAIL-resistant prostate carcinoma PC-3 and melanoma M202 cell lines were examined. Transfection with CMV-RKIP, but not with control CMV-EV, sensitized the cells to TRAIL-mediated apoptosis. Treatment with RKIP small interfering RNA (siRNA) inhibited TRAIL-induced apoptosis. RKIP overexpression was paralleled with up-regulation of DR5 transcription and expression; no change in DR4, decoy receptor 1, and decoy receptor 2 expression; and inhibition of YY1 transcription and expression. Inhibition of YY1 by YY1 siRNA sensitized the cells to TRAIL apoptosis concomitantly with DR5 up-regulation. RKIP overexpression inhibited several antiapoptotic gene products such as X-linked inhibitor of apoptosis (XIAP), c-FLIP long, and Bcl-xL that were accompanied with mitochondrial membrane depolarization. RKIP overexpression in combination with TRAIL resulted in the potentiation of these above effects and activation of caspases 8, 9, and 3, resulting in apoptosis. These findings demonstrate that RKIP overexpression regulates tumor cell sensitivity to TRAIL via inhibition of YY1, up-regulation of DR5, and modulation of apoptotic pathways. We suggest that RKIP may serve as an immune surveillance cancer gene, and its low expression or absence in tumors allows the tumor to escape host immune cytotoxic effector cells.


Cancer Research | 2009

Pivotal Roles of Snail Inhibition and RKIP Induction by the Proteasome Inhibitor NPI-0052 in Tumor Cell Chemoimmunosensitization

Stavroula Baritaki; Kam C. Yeung; Michael A. Palladino; James R. Berenson; Benjamin Bonavida

The novel proteasome inhibitor NPI-0052 has been shown to sensitize tumor cells to apoptosis by various chemotherapeutic drugs and tumor necrosis factor-related apoptosis-inducing ligand (TRAIL), although the mechanisms involved are not clear. We hypothesized that NPI-0052-mediated sensitization may result from NF-kappaB inhibition and downstream modulation of the metastasis inducer Snail and the metastasis suppressor/immunosurveillance cancer gene product Raf-1 kinase inhibitory protein (RKIP). Human prostate cancer cell lines were used as models, as they express different levels of these proteins. We show that NPI-0052 inhibits both NF-kappaB and Snail and induces RKIP expression, thus resulting in cell sensitization to CDDP and TRAIL. The direct role of NF-kappaB inhibition in sensitization was corroborated with the NF-kappaB inhibitor DHMEQ, which mimicked NPI-0052 in sensitization and inhibition of Snail and induction of RKIP. The direct role of Snail inhibition by NPI-0052 in sensitization was shown with Snail small interfering RNA, which reversed resistance and induced RKIP. Likewise, the direct role of RKIP induction in sensitization was revealed by both overexpression of RKIP (mimicking NPI-0052) and RKIP small interfering RNA that inhibited NPI-0052-mediated sensitization. These findings show that NPI-0052 modifies the NF-kappaB-Snail-RKIP circuitry in tumor cells and results in downstream inhibition of antiapoptotic gene products and chemoimmunosensitization. The findings also identified Snail and RKIP as targets for reversal of resistance.

Collaboration


Dive into the Kam C. Yeung's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Devasis Chatterjee

University of Toledo Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ila Datar

Case Western Reserve University

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge