Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kamal A Amin is active.

Publication


Featured researches published by Kamal A Amin.


Food and Chemical Toxicology | 2010

Effect of food azo dyes tartrazine and carmoisine on biochemical parameters related to renal, hepatic function and oxidative stress biomarkers in young male rats.

Kamal A Amin; H. Abdel Hameid; A.H. Abd Elsttar

Tartrazine and carmoisine are an organic azo dyes widely used in food products, drugs and cosmetics. The present study conducted to evaluate the toxic effect of these coloring food additives; on renal, hepatic function, lipid profile, blood glucose, body-weight gain and biomarkers of oxidative stress in tissue. Tartrazine and carmoisine were administered orally in two doses, one low and the other high dose for 30 days followed by serum and tissue sample collection for determination of ALT, AST, ALP, urea, creatinine, total protein, albumin, lipid profile, fasting blood glucose in serum and estimation of GSH, catalase, SOD and MDA in liver tissue in male albino rat. Our data showed a significant increase in ALT, AST, ALP, urea, creatinine total protein and albumin in serum of rats dosed with tartrazine and carmoisine compared to control rats and these significant change were more apparent in high doses than low, GSH, SOD and Catalase were decreased and MDA increased in tissue homogenate in rats consumed high tartrazine and both doses of carmoisine. We concluded that tartrazine and carmoisine affect adversely and alter biochemical markers in vital organs e.g. liver and kidney not only at higher doses but also at low doses.


Diabetology & Metabolic Syndrome | 2009

Effect of Carnitine and herbal mixture extract on obesity induced by high fat diet in rats

Kamal A Amin; Mohamed A Nagy

BackgroundObesity-associated type 2 diabetes is rapidly increasing throughout the world. It is generally recognized that natural products with a long history of safety can modulate obesity.AimTo investigate the development of obesity in response to a high fat diet (HFD) and to estimate the effect of L-carnitine and an Egyptian Herbal mixture formulation (HMF) (consisting of T. chebula, Senae, rhubarb, black cumin, aniseed, fennel and licorice) on bodyweight, food intake, lipid profiles, renal, hepatic, cardiac function markers, lipid Peroxidation, and the glucose and insulin levels in blood and liver tissue in rats.MethodWhite male albino rats weighing 80-90 gm, 60 days old. 10 rats were fed a normal basal diet (Cr), 30 rats fed a high-fat diet (HFD) for 14 weeks during the entire study. Rats of the HFD group were equally divided into 3 subgroups each one include 10 rats. The first group received HFD with no supplement (HFD), the 2nd group HFD+L-carnitine and the third group received HFD+HMF. Carnitine and HMF were administered at 10th week (start time for treatments) for 4 weeks.Body weight, lipid profile & renal function (urea, uric acid creatinine) ALT & AST activities, cardiac markers, (LDH, C.K-NAC and MB) the oxidative stress marker reduced glutathione (GSH), and Malondialdehyde (MDA) catalase activity, in addition to glucose, insulin, and insulin resistance in serum & tissues were analyzed.ResultsData showed that feeding HFD diet significantly increased final body weight, triglycerides (TG), total cholesterol, & LDL concentration compared with controls, while significantly decreasing HDL; meanwhile treatment with L-carnitine, or HMF significantly normalized the lipid profile.Serum ALT, urea, uric acid, creatinine, LDH, CK-NAC, CK-MB were significantly higher in the high fat group compared with normal controls; and administration of L-carnitine or herbal extract significantly lessened the effect of the HFD. Hyperglycemia, hyperinsulinemia, and high insulin resistance (IR) significantly increased in HFD in comparison with the control group. The treatment with L-carnitine or HMF improved the condition. HFD elevated hepatic MDA and lipid peroxidation associated with reduction in hepatic GSH and catalase activity; whereas administration of L-carnitine or herbal extract significantly ameliorated these hepatic alterations.ConclusionHFD induced obesity associated with a disturbed lipid profile, defective antioxidant stability, and high values of IR parameters; this may have implications for the progress of obesity related problems. Treatment with L-carnitine, or HMF extract improved obesity and its associated metabolic problems in different degrees. Also HMF has antioxidant, hypolipidaemic insulin sensitizing effects. Moreover HMF might be a safe combination on the organs whose functions were examined, as a way to surmount the obesity state; and it has a distinct anti-obesity effect.


International Journal of Nanomedicine | 2011

The protective effects of cerium oxide nanoparticles against hepatic oxidative damage induced by monocrotaline.

Kamal A Amin; Mohamed Sayed Hassan; El-Said T Awad; Khalid S. Hashem

Objective The objective of the present study was to determine the ability of cerium oxide (CeO2) nanoparticles to protect against monocrotaline (MCT)-induced hepatotoxicity in a rat model. Method Twenty male Sprague Dawley rats were arbitrarily assigned to four groups: control (received saline), CeO2 (given 0.0001 nmol/kg intraperitoneally [IP]), MCT (given 10 mg/kg body weight IP as a single dose), and MCT + CeO2 (received CeO2 both before and after MCT). Electron microscopic imaging of the rat livers was carried out, and hepatic total glutathione (GSH), glutathione reductase (GR), glutathione peroxidase (GPX), glutathione S-transferase (GST), superoxide dismutase (SOD), and catalase (CAT) enzymatic activities were quantified. Results Results showed a significant MCT-induced decrease in total hepatic GSH, GPX, GR, and GST normalized to control values with concurrent CeO2 administration. In addition, MCT produced significant increases in hepatic CAT and SOD activities, which also ameliorated with CeO2. Conclusions These results indicate that CeO2 acts as a putative novel and effective hepatoprotective agent against MCT-induced hepatotoxicity.


BMC Veterinary Research | 2012

Deltamethrin-induced oxidative stress and biochemical changes in tissues and blood of catfish ( Clarias gariepinus ): antioxidant defense and role of alpha-tocopherol

Kamal A Amin; Khalid S. Hashem

BackgroundThe pyrethroid class of insecticides, including deltamethrin, is being used as substitutes for organochlorines and organophosphates in pest-control programs because of their low environmental persistence and toxicity. This study was aimed to investigate the impact of commonly used pesticides (deltamethrin) on the blood and tissue oxidative stress level in catfish (Clarias gariepinus); in addition to the protective effect of α-tocopherol on deltamethrin induced oxidative stress.Catfish were divided into three groups, 1st control group include 20 fish divided into two tanks each one contain 10 fish, 2nd deltamethrin group, where Fish exposed to deltamethrin in a concentration (0.75 μg/l) and 3rd Vitamin E group, Fish exposed to deltamethrin and vitamin E at a dose of 12 μg/l for successive 4 days.Serum, liver, kidney and Gills were collected for biochemical assays. Tissue oxidative stress biomarkers malondialdhyde (MDA) and catalase activity in liver, kidney and gills tissues, serum liver enzymes (ALT and AST), serum albumin, total protein, urea and creatinine were analysed.ResultsOur results showed that 48 h. exposure to 0.75 μg/l deltamethrin significantly (p < 0.05) increased lipid peroxidation (MDA) in the liver, kidney and gills while catalase activity was significantly decreased in the same tissues. This accompanied by significant increase in serum ALT, AST activity, urea and creatinine and a marked decrease in serum albumin and total proteins.ConclusionsIt could be concluded that deltamethrin is highly toxic to catfish even in very low concentration (0.75 μg/l). Moreover the effect of deltamethrin was pronounced in the liver of catfish in comparison with kidneys and gills. Moreover fish antioxidants and oxidative stress could be used as biomarkers for aquatic pollution, thus helping in the diagnosis of pollution. Adminstration of 12 μg/l α-tocopherol restored the quantified tissue and serum parameters, so supplementation of α-tocopherol consider an effective way to counter the toxicity of deltamethrin in the catfish.


Lipids in Health and Disease | 2011

Protective effect of Garcinia against renal oxidative stress and biomarkers induced by high fat and sucrose diet

Kamal A Amin; Hamdy H Kamel; Mohamed A Abd Eltawab

BackgroundObesity became major health problem in the world, the objective of this work was to examine the effect of high sucrose and high fat diet to induce obesity on antioxidant defense system, biochemical changes in blood and tissue of control, non treated and treated groups by administration of Garcinia cambogia, and explore the mechanisms that link obesity with altered renal functionMethodsRats were fed a standard control diet for 12 week (wk) or a diet containing 65% high sucrose (HSD) or 35% fat (HFD) for 8 wk and then HFD group divided into two groups for the following 4 wks. One group was given Garcinia+HFD, the second only high fat, Also the HSD divided into two groups, 1st HSD+Garcinia and 2nd HSD. Blood and renal, mesenteric, Perirenal and epididymal adipose tissues were collected for biochemical assays.ResultsHFD and HSD groups of rats showed a significant increase in feed intake, Body weight (BW) and body mass index (BMI). Also there were significant increases in weights of mesenteric, Perirenal and epididymal adipose tissues in HFD and HSD groups.HFD and HSD affect the kidney by increasing serum urea and creatinine levels and decreased level of nitric oxide (NO) and increased blood glucose, low density lipoproteins (LDL), triacylglycerol (TG), total cholesterol (TC) and malondialdehyde (MDA). Glucose 6-phosphate dehydrogenase (G6PD) activities were significantly decreased in HFD while there were significant increases in HSD and HSD+G groups p ≤ 0.05 compared with control. Moreover, renal catalase activities and MDA levels were significantly increased while NO level was lowered. These changes improved by Garcinia that decreased the oxidative stress biomarkers and increased NO level.There were significant positive correlations among BMI, kidney functions (Creatinine and urea), TG and Oxidative markers (renal MDA and catalase).ConclusionsRats fed a diet with HFD or HSD showed, hypertriglyceridemia, increased LDL production, increased oxidative stress and renal alteration. Moreover, suggesting association between lipid peroxidation, obesity and nephropathy, while Garcinia ameliorated the damaging effects of the HFD or HSD and decreased feed intake, MDA level and decreased oxidative stress in renal tissues.


Lipids in Health and Disease | 2011

The relation of high fat diet, metabolic disturbances and brain oxidative dysfunction: modulation by hydroxy citric acid

Kamal A Amin; Hamdy H Kamel; Mohamed A Abd Eltawab

AimsThis study aimed to examine the effect of high fat diet (HFD) to modulate brain dysfunction, and understand the linkages between obesity, metabolic disturbances and the brain oxidative stress (BOS) dysfunction and modulation with hydroxyl citric acid of G. Cambogia.MethodsRats were divided into 3 groups; 1st control, maintained on standard normal rat chow diet, 2nd HFD, maintained on high fat diet along 12 week and 3rd HFD+G, administered G. Cambogia for 4 weeks and each group include 8 rats. Blood, brain and abdominal fat were collected for biochemical measurements.ResultsHFD group showed significant increase in energy intake, final BW and BW gain. Also significant increase in weight of abdominal fat in HFD group. HFD induce metabolic disturbance through increasing the lipid profile (LDL, TG, TC), γGT and α-amylase activity, uric acid level and hyperglycemia, while decreasing creatine kinase (CK) activity.These changes associated with lowering in brain nitric oxide (NO) level and rising in serum butyrylcholinesterase (BChE), brain catalase activity and MDA levels as oxidative stress markers. These alterations improved by G. Cambogia that decrease BOS and increased NO level.ConclusionsRats fed HFD showed, metabolic disturbances produce hyperglycemia, hypertriglyceridemia, hypercholesterolemia and increased LDL associated with increased BOS. Involvement of BuChE, NO and oxidative stress associated with metabolic disturbances in the pathophysiological progression in brain, suggesting association between obesity, metabolic disorders and brain alteration while, using G. Cambogia, ameliorate the damaging effects of the HFD via lowering feed intake and BOS.


Journal of Diabetes and Its Complications | 2011

Role of lipoic acid on insulin resistance and leptin in experimentally diabetic rats.

Mohammed A. Kandeil; Kamal A Amin; Kamel Mohamed Abd Al Hassanin; Kalid M. Ali; Eman Taha Mohammed

OBJECTIVE We aimed to examine the changes in serum insulin and leptin levels in induced type 1 diabetes mellitus in relationship to glycemic state and lipid profiles and to clarify the role of lipoic acid (LA). METHODS Ninety-six male rats were equally divided into the following: a control group (normal, nondiabetic), a diabetic group induced by subcutaneous injection of alloxan (non-LA-treated), and an LA-treated diabetic group (for 4 weeks). Body weight, serum lipid profile, glucose, insulin, homeostasis model assessment-insulin resistance (HOMA-IR), and leptin were measured. RESULTS This study showed a significant increase in serum triacylglycerol (TG), total cholesterol, glucose levels, and HOMA-IR and a significant decrease in body weight gain, insulin, and leptin levels in the diabetic group compared to the control group. LA treatment induced a significant decrease in glucose, TG, and total cholesterol levels and significantly increased serum insulin and leptin levels in comparison with the diabetic group. CONCLUSION Induced diabetes resulted in insulin resistance, hyperlipidemia, and hypoleptinemia, while LA ameliorates these changes and improves insulin sensitivity.


Journal of Complementary and Integrative Medicine | 2014

Oxidative hepatotoxicity effects of monocrotaline and its amelioration by lipoic acid, S-adenosyl methionine and vitamin E

Kamal A Amin; Khalid S. Hashem; Hessa M. Al-muzafar; Eman M. Taha

Abstract Liver is the major site for several xenobiotics metabolism, and formation of toxic metabolites that may be hepatotoxic, therefore the burden of metabolism and exposure to dangerous chemicals make liver vulnerable to a variety of disorders. Our work aimed to investigate the effects of some antioxidants such as lipoic acid (LA), S-adenosyl methionine (SAM) and vitamin E in a trail to investigate the possibility of using these substances to relieve and protect liver from exposure to monocrotaline (MCT). Twenty-five mature adult rats were classified into five groups (five rats in each group), control group, MCT-induced hepatic damage, LA+MCT, SAM+MCT and vitamin E+MCT group. Homogenates of liver samples were used for measuring the oxidative biomarkers and hepatic antioxidant status. The results showed that administration of vitamin E, SAM and LA caused a significant increase in liver glutathione contents, glutathione reductase, glutathione peroxidase and glutathione-S-transferase activities and a significant decrease in hepatic catalase and superoxide dismutase. We could conclude that administration of natural LA, SAM and vitamin E before and after MCT injection modulate the hepatic oxidative stresses induced by MCT in various extents.


Journal of Breast Cancer | 2012

Impact of Breast Cancer and Combination Chemotherapy on Oxidative Stress, Hepatic and Cardiac Markers

Kamal A Amin; Basant Mahmoud Mohamed; Mohamed El-Wakil; Sanaa Omar Ibrahem


American Journal of Physiology, Biochemistry and Pharmacology | 2014

Alterations in plasma lipids, glutathione and homocysteine in relation to dietary copper in rats

Magda A. Megahed; Kamel Mohamed Abd Al Hassanin; Ibrahim M. I. Youssef; Abdul Baset A. Elfghi; Kamal A Amin

Collaboration


Dive into the Kamal A Amin's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge