Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kamel Jabbari is active.

Publication


Featured researches published by Kamel Jabbari.


Science | 2014

Early allopolyploid evolution in the post-neolithic Brassica napus oilseed genome

Boulos Chalhoub; Shengyi Liu; Isobel A. P. Parkin; Haibao Tang; Xiyin Wang; Julien Chiquet; Harry Belcram; Chaobo Tong; Birgit Samans; Margot Corréa; Corinne Da Silva; Jérémy Just; Cyril Falentin; Chu Shin Koh; Isabelle Le Clainche; Maria Bernard; Pascal Bento; Benjamin Noel; Karine Labadie; Adriana Alberti; Mathieu Charles; Dominique Arnaud; Hui Guo; Christian Daviaud; Salman Alamery; Kamel Jabbari; Meixia Zhao; Patrick P. Edger; Houda Chelaifa; David Tack

The genomic origins of rape oilseed Many domesticated plants arose through the meeting of multiple genomes through hybridization and genome doubling, known as polyploidy. Chalhoub et al. sequenced the polyploid genome of Brassica napus, which originated from a recent combination of two distinct genomes approximately 7500 years ago and gave rise to the crops of rape oilseed (canola), kale, and rutabaga. B. napus has undergone multiple events affecting differently sized genetic regions where a gene from one progenitor species has been converted to the copy from a second progenitor species. Some of these gene conversion events appear to have been selected by humans as part of the process of domestication and crop improvement. Science, this issue p. 950 The polyploid genome of oilseed rape exhibits evolution through homologous gene conversion. Oilseed rape (Brassica napus L.) was formed ~7500 years ago by hybridization between B. rapa and B. oleracea, followed by chromosome doubling, a process known as allopolyploidy. Together with more ancient polyploidizations, this conferred an aggregate 72× genome multiplication since the origin of angiosperms and high gene content. We examined the B. napus genome and the consequences of its recent duplication. The constituent An and Cn subgenomes are engaged in subtle structural, functional, and epigenetic cross-talk, with abundant homeologous exchanges. Incipient gene loss and expression divergence have begun. Selection in B. napus oilseed types has accelerated the loss of glucosinolate genes, while preserving expansion of oil biosynthesis genes. These processes provide insights into allopolyploid evolution and its relationship with crop domestication and improvement.


Nature | 2012

The banana (Musa acuminata) genome and the evolution of monocotyledonous plants.

Angélique D’Hont; Jean-Marc Aury; Franc-Christophe Baurens; Françoise Carreel; Olivier Garsmeur; Benjamin Noel; Stéphanie Bocs; Gaëtan Droc; Mathieu Rouard; Corinne Da Silva; Kamel Jabbari; Céline Cardi; Julie Poulain; Marlène Souquet; Karine Labadie; Cyril Jourda; Juliette Lengellé; Marguerite Rodier-Goud; Adriana Alberti; Maria Bernard; Margot Corréa; Saravanaraj Ayyampalayam; Michael R. McKain; Jim Leebens-Mack; Diane Burgess; Michael Freeling; Didier Mbéguié-A-Mbéguié; Matthieu Chabannes; Thomas Wicker; Olivier Panaud

Bananas (Musa spp.), including dessert and cooking types, are giant perennial monocotyledonous herbs of the order Zingiberales, a sister group to the well-studied Poales, which include cereals. Bananas are vital for food security in many tropical and subtropical countries and the most popular fruit in industrialized countries. The Musa domestication process started some 7,000 years ago in Southeast Asia. It involved hybridizations between diverse species and subspecies, fostered by human migrations, and selection of diploid and triploid seedless, parthenocarpic hybrids thereafter widely dispersed by vegetative propagation. Half of the current production relies on somaclones derived from a single triploid genotype (Cavendish). Pests and diseases have gradually become adapted, representing an imminent danger for global banana production. Here we describe the draft sequence of the 523-megabase genome of a Musa acuminata doubled-haploid genotype, providing a crucial stepping-stone for genetic improvement of banana. We detected three rounds of whole-genome duplications in the Musa lineage, independently of those previously described in the Poales lineage and the one we detected in the Arecales lineage. This first monocotyledon high-continuity whole-genome sequence reported outside Poales represents an essential bridge for comparative genome analysis in plants. As such, it clarifies commelinid-monocotyledon phylogenetic relationships, reveals Poaceae-specific features and has led to the discovery of conserved non-coding sequences predating monocotyledon–eudicotyledon divergence.


Proceedings of the National Academy of Sciences of the United States of America | 2013

Genome structure and metabolic features in the red seaweed Chondrus crispus shed light on evolution of the Archaeplastida

Jonas Collén; Betina M. Porcel; Wilfrid Carré; Steven G. Ball; Cristian Chaparro; Thierry Tonon; Tristan Barbeyron; Gurvan Michel; Benjamin Noel; Klaus Valentin; Marek Eliáš; François Artiguenave; Alok Arun; Jean-Marc Aury; Jose Fernandes Barbosa-Neto; John H. Bothwell; François-Yves Bouget; Loraine Brillet; Francisco Cabello-Hurtado; Salvador Capella-Gutiérrez; Bénédicte Charrier; Lionel Cladière; J. Mark Cock; Susana M. Coelho; Christophe Colleoni; Mirjam Czjzek; Corinne Da Silva; Ludovic Delage; Philippe Deschamps; Simon M. Dittami

Red seaweeds are key components of coastal ecosystems and are economically important as food and as a source of gelling agents, but their genes and genomes have received little attention. Here we report the sequencing of the 105-Mbp genome of the florideophyte Chondrus crispus (Irish moss) and the annotation of the 9,606 genes. The genome features an unusual structure characterized by gene-dense regions surrounded by repeat-rich regions dominated by transposable elements. Despite its fairly large size, this genome shows features typical of compact genomes, e.g., on average only 0.3 introns per gene, short introns, low median distance between genes, small gene families, and no indication of large-scale genome duplication. The genome also gives insights into the metabolism of marine red algae and adaptations to the marine environment, including genes related to halogen metabolism, oxylipins, and multicellularity (microRNA processing and transcription factors). Particularly interesting are features related to carbohydrate metabolism, which include a minimalistic gene set for starch biosynthesis, the presence of cellulose synthases acquired before the primary endosymbiosis showing the polyphyly of cellulose synthesis in Archaeplastida, and cellulases absent in terrestrial plants as well as the occurrence of a mannosylglycerate synthase potentially originating from a marine bacterium. To explain the observations on genome structure and gene content, we propose an evolutionary scenario involving an ancestral red alga that was driven by early ecological forces to lose genes, introns, and intergenetic DNA; this loss was followed by an expansion of genome size as a consequence of activity of transposable elements.


Gene | 2001

Similar integration but different stability of Alus and LINEs in the human genome

Adam Pavlicek; Kamel Jabbari; Jan Pačes; Václav Pačes; Jiří Hejnar; Giorgio Bernardi

Alus and LINEs (LINE1) are widespread classes of repeats that are very unevenly distributed in the human genome. The majority of GC-poor LINEs reside in the GC-poor isochores whereas GC-rich Alus are mostly present in GC-rich isochores. The discovery that LINES and Alus share similar target site duplication and a common AT-rich insertion site specificity raised the question as to why these two families of repeats show such a different distribution in the genome. This problem was investigated here by studying the isochore distributions of subfamilies of LINES and Alus characterized by different degrees of divergence from the consensus sequences, and of Alus, LINEs and pseudogenes located on chromosomes 21 and 22. Young Alus are more frequent in the GC-poor part of the genome than old Alus. This suggests that the gradual accumulation of Alus in GC-rich isochores has occurred because of their higher stability in compositionally matching chromosomal regions. Densities of Alus and LINEs increase and decrease, respectively, with increasing GC levels, except for the telomeric regions of the analyzed chromosomes. In addition to LINEs, processed pseudogenes are also more frequent in GC-poor isochores. Finally, the present results on Alu and LINE stability/exclusion predict significant losses of Alu DNA from the GC-poor isochores during evolution, a phenomenon apparently due to negative selection against sequences that differ from the isochore composition.


Gene | 1998

CpG doublets, CpG islands and Alu repeats in long human DNA sequences from different isochore families.

Kamel Jabbari; Giorgio Bernardi

A computer analysis of 946 human DNA sequences larger than 50kb and representing about 118Mb of DNA has led to the following observations. (i) Positive correlations hold between CpG levels and the GC levels of isochores and coding sequences, as expected from previous results. (ii) The correlation between CpG levels and the GC levels of pseudogenes is characterized by lower CpG values (at comparable GC levels) and by a lower slope compared with the correlation with coding sequences; this finding suggests that an extensive methylation followed by deamination has taken place on CpG doublets from inactive genes leading to a further CpG shortage. (iii) The frequency of CpG islands in long human sequences increases with increasing GC and almost parallels gene frequency. (iv) The frequency of Alu sequences also increases with increasing GC, but attains a maximum in H2 isochores, in agreement with previous experimental data. (v) The ratio 5mC/CpG (namely, the methylation level over available sites) decreases with increasing GC levels of isochores. This decrease is due only to a small extent to the increase of (unmethylated) CpG islands in GC-rich isochores, and takes place in spite of the increase of strongly methylated Alu sequences in GC-rich isochores; this stresses the much lower relative methylation (5mC/CpG) of single-copy sequences located in GC-rich isochores relative to those located in GC-poor isochores. (vi) CpG levels of Alus and CpG islands are positively correlated with the GC levels of the long sequences in which they are located. (vii) The CpG levels of both Alus and CpG islands increase with their GC levels.


Journal of Molecular Evolution | 1998

Compositional Properties of Homologous Coding Sequences from Plants

Nicolas Carels; Pascal Hatey; Kamel Jabbari; Giorgio Bernardi

Abstract. In this work, we investigated (1) the compositional distributions of all available nuclear coding sequences (and of their three codon positions) of six dicots and four Gramineae; this considerably expanded our knowledge about the differences previously seen between these two groups of plants; (2) the compositional correlations of homologous genes from dicots and from Gramineae, as well as from both groups; all correlations were characterized by very good coefficients, with slopes close to unity in the former two cases and very high in the last; (3) the compositional transition that accompanied the emergence of Gramineae from an ancestral monocot; (4) the compositional correlations between exons and introns, which were very good in Gramineae, but only poor to good in dicots; and (5) the compositional profiles of homologous genes from angiosperms, which were characterized by a series of peaks (exons) and valleys (introns) separated by 15–20% GC. The conservative and transitional modes of compositional evolution in plant genes and their general implications are discussed.


Gene | 1997

Evolutionary changes in CpG and methylation levels in the genome of vertebrates

Kamel Jabbari; Simone M. Cacciò; Jean-Paul Pais de Barros; Jean Desgrès; Giorgio Bernardi

We have analysed the levels of 5-methylcytosine (5mC) in DNAs from 42 vertebrates, and compiled, including data from literature, a table of genomic 5mC and GC levels (as well as the available c-values, i.e., the haploid genome sizes) of 87 species from all vertebrate classes. An analysis of the data indicates that (i) two positive correlations hold between the 5mC and GC levels of the genomes of fishes/amphibians and mammals/birds, respectively; (ii) the genomes of fishes and amphibians are, on average, about twice as methylated as those of mammals, birds and reptiles, this difference being unrelated to the amounts of repetitive DNA sequences; (iii) the 5mC and CpG observed/expected values show no overlap between the two groups of vertebrates and suggest the existence of two equilibria. The transition separating the two equilibria appears to have taken place at the time of appearance of reptiles. Its possible cause(s) and its implications are discussed.


Annals of Neurology | 2014

DEPDC5 mutations in genetic focal epilepsies of childhood.

Dennis Lal; Eva M. Reinthaler; Julian Schubert; Hiltrud Muhle; Erik Riesch; Gerhard Kluger; Kamel Jabbari; Christine Bäumel; Hans Holthausen; Andreas Hahn; Martha Feucht; Birgit Neophytou; Edda Haberlandt; Felicitas Becker; Janine Altmüller; Holger Thiele; Johannes R. Lemke; Holger Lerche; Peter Nürnberg; Thomas Sander; Yvonne G. Weber; Fritz Zimprich; Bernd A. Neubauer

Recent studies reported DEPDC5 loss‐of‐function mutations in different focal epilepsy syndromes. Here we identified 1 predicted truncation and 2 missense mutations in 3 children with rolandic epilepsy (3 of 207). In addition, we identified 3 families with unclassified focal childhood epilepsies carrying predicted truncating DEPDC5 mutations (3 of 82). The detected variants were all novel, inherited, and present in all tested affected (n = 11) and in 7 unaffected family members, indicating low penetrance. Our findings extend the phenotypic spectrum associated with mutations in DEPDC5 and suggest that rolandic epilepsy, albeit rarely, and other nonlesional childhood epilepsies are among the associated syndromes. Ann Neurol 2014;75:788–792


Journal of Molecular Evolution | 1999

Synonymous Codon Choices in the Extremely GC-Poor Genome of Plasmodium falciparum: Compositional Constraints and Translational Selection

Héctor Musto; Héctor Romero; Alejandro Zavala; Kamel Jabbari; Giorgio Bernardi

Abstract. We have analyzed the patterns of synonymous codon preferences of the nuclear genes of Plasmodium falciparum, a unicellular parasite characterized by an extremely GC-poor genome. When all genes are considered, codon usage is strongly biased toward A and T in third codon positions, as expected, but multivariate statistical analysis detects a major trend among genes. At one end genes display codon choices determined mainly by the extreme genome composition of this parasite, and very probably their expression level is low. At the other end a few genes exhibit an increased relative usage of a particular subset of codons, many of which are C-ending. Since the majority of these few genes is putatively highly expressed, we postulate that the increased C-ending codons are translationally optimal. In conclusion, while codon usage of the majority of P. falciparum genes is determined mainly by compositional constraints, a small number of genes exhibit translational selection.


Journal of Molecular Evolution | 1998

Synonymous and Nonsynonymous Substitutions in Mammalian Genes: Intragenic Correlations

Fernando Alvarez-Valin; Kamel Jabbari; Giorgio Bernardi

Abstract. Previous investigations indicated that synonymous and nonsynonymous substitution rates are correlated in mammalian genes. In the present work, this correlation has been studied at the intragenic level using a dataset of 48 orthologous genes from species belonging to at least four different mammalian orders. The results obtained show that the intragenic variability in synonymous rates is correlated with that of nonsynonymous rates. Moreover, the variation in GC level (and especially of C level) of silent positions along each gene is correlated with the variation in synonymous rate. These results reinforce the previous conclusions that synonymous and nonsynonymous rates as well as GC levels of silent positions are to some extent under common selective constraints.

Collaboration


Dive into the Kamel Jabbari's collaboration.

Top Co-Authors

Avatar

Giorgio Bernardi

Stazione Zoologica Anton Dohrn

View shared research outputs
Top Co-Authors

Avatar

Oliver Clay

Stazione Zoologica Anton Dohrn

View shared research outputs
Top Co-Authors

Avatar

Benjamin Noel

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Fernando Alvarez-Valin

Stazione Zoologica Anton Dohrn

View shared research outputs
Top Co-Authors

Avatar

Giuseppe D'Onofrio

Stazione Zoologica Anton Dohrn

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Héctor Musto

Stazione Zoologica Anton Dohrn

View shared research outputs
Top Co-Authors

Avatar

Stéphane Cruveiller

Stazione Zoologica Anton Dohrn

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge