Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kamel Mamchaoui is active.

Publication


Featured researches published by Kamel Mamchaoui.


Journal of Clinical Investigation | 2004

Human circulating AC133 + stem cells restore dystrophin expression and ameliorate function in dystrophic skeletal muscle

Yvan Torrente; Marzia Belicchi; Maurilio Sampaolesi; Federica Pisati; Mirella Meregalli; Giuseppe D’Antona; Rossana Tonlorenzi; Laura Porretti; Manuela Gavina; Kamel Mamchaoui; Denis Furling; Vincent Mouly; Gillian Butler-Browne; Roberto Bottinelli; Giulio Cossu; Nereo Bresolin

Duchenne muscular dystrophy (DMD) is a common X-linked disease characterized by widespread muscle damage that invariably leads to paralysis and death. There is currently no therapy for this disease. Here we report that a subpopulation of circulating cells expressing AC133, a well-characterized marker of hematopoietic stem cells, also expresses early myogenic markers. Freshly isolated, circulating AC133(+) cells were induced to undergo myogenesis when cocultured with myogenic cells or exposed to Wnt-producing cells in vitro and when delivered in vivo through the arterial circulation or directly into the muscles of transgenic scid/mdx mice (which allow survival of human cells). Injected cells also localized under the basal lamina of host muscle fibers and expressed satellite cell markers such as M-cadherin and MYF5. Furthermore, functional tests of injected muscles revealed a substantial recovery of force after treatment. As these cells can be isolated from the blood, manipulated in vitro, and delivered through the circulation, they represent a possible tool for future cell therapy applications in DMD disease or other muscular dystrophies.


Aging Cell | 2007

Cellular senescence in human myoblasts is overcome by human telomerase reverse transcriptase and cyclin‐dependent kinase 4: consequences in aging muscle and therapeutic strategies for muscular dystrophies

Chun Hong Zhu; Vincent Mouly; Racquel N. Cooper; Kamel Mamchaoui; Anne Bigot; Jerry W. Shay; James P. Di Santo; Gillian Butler-Browne; Woodring E. Wright

Cultured human myoblasts fail to immortalize following the introduction of telomerase. The availability of an immortalization protocol for normal human myoblasts would allow one to isolate cellular models from various neuromuscular diseases, thus opening the possibility to develop and test novel therapeutic strategies. The parameters limiting the efficacy of myoblast transfer therapy (MTT) could be assessed in such models. Finally, the presence of an unlimited number of cell divisions, and thus the ability to clone cells after experimental manipulations, reduces the risks of insertional mutagenesis by many orders of magnitude. This opportunity for genetic modification provides an approach for creating a universal donor that has been altered to be more therapeutically useful than its normal counterpart. It can be engineered to function under conditions of chronic damage (which are very different than the massive regeneration conditions that recapitulate normal development), and to overcome the biological problems such as cell death and failure to proliferate and migrate that limit current MTT strategies. We describe here the production and characterization of a human myogenic cell line, LHCN‐M2, that has overcome replicative aging due to the expression of telomerase and cyclin‐dependent kinase 4. We demonstrate that it functions as well as young myoblasts in xenotransplant experiments in immunocompromized mice under conditions of regeneration following muscle damage.


Skeletal Muscle | 2011

Immortalized pathological human myoblasts: towards a universal tool for the study of neuromuscular disorders

Kamel Mamchaoui; Capucine Trollet; Anne Bigot; Elisa Negroni; Soraya Chaouch; Annie Wolff; Prashanth K Kandalla; Solenne Marie; James P. Di Santo; Jean Lacau St Guily; Francesco Muntoni; Jihee Kim; Susanne Philippi; Simone Spuler; Nicolas Lévy; Sergiu C. Blumen; Thomas Voit; Woodring E. Wright; Ahmed Aamiri; Gillian Butler-Browne; Vincent Mouly

BackgroundInvestigations into both the pathophysiology and therapeutic targets in muscle dystrophies have been hampered by the limited proliferative capacity of human myoblasts. Isolation of reliable and stable immortalized cell lines from patient biopsies is a powerful tool for investigating pathological mechanisms, including those associated with muscle aging, and for developing innovative gene-based, cell-based or pharmacological biotherapies.MethodsUsing transduction with both telomerase-expressing and cyclin-dependent kinase 4-expressing vectors, we were able to generate a battery of immortalized human muscle stem-cell lines from patients with various neuromuscular disorders.ResultsThe immortalized human cell lines from patients with Duchenne muscular dystrophy, facioscapulohumeral muscular dystrophy, oculopharyngeal muscular dystrophy, congenital muscular dystrophy, and limb-girdle muscular dystrophy type 2B had greatly increased proliferative capacity, and maintained their potential to differentiate both in vitro and in vivo after transplantation into regenerating muscle of immunodeficient mice.ConclusionsDystrophic cellular models are required as a supplement to animal models to assess cellular mechanisms, such as signaling defects, or to perform high-throughput screening for therapeutic molecules. These investigations have been conducted for many years on cells derived from animals, and would greatly benefit from having human cell models with prolonged proliferative capacity. Furthermore, the possibility to assess in vivo the regenerative capacity of these cells extends their potential use. The innovative cellular tools derived from several different neuromuscular diseases as described in this report will allow investigation of the pathophysiology of these disorders and assessment of new therapeutic strategies.


Journal of Biological Chemistry | 2008

Inhibition of Chikungunya Virus Infection in Cultured Human Muscle Cells by Furin Inhibitors IMPAIRMENT OF THE MATURATION OF THE E2 SURFACE GLYCOPROTEIN

Simona Ozden; Marianne Lucas-Hourani; Pierre-Emmanuel Ceccaldi; Ajoy Basak; Menogh Valentine; Suzanne Benjannet; Josée Hamelin; Yves Jacob; Kamel Mamchaoui; Vincent Mouly; Philippe Desprès; Antoine Gessain; Gillian Butler-Browne; Michel Chrétien; Frédéric Tangy; Pierre-Olivier Vidalain; Nabil G. Seidah

Chikungunya virus (CHIKV) is a mosquito-transmitted Alphavirus that causes in humans an acute infection characterized by polyarthralgia, fever, myalgia, and headache. Since 2005 this virus has been responsible for an epidemic outbreak of unprecedented magnitude. By analogy with other alphaviruses, it is thought that cellular proteases are able to process the viral precursor protein E3E2 to produce the receptor-binding E2 protein that associates as a heterodimer with E1. Destabilization of the heterodimer by exposure to low pH allows viral fusion and infection. We show that among a large panel of proprotein convertases, membranous furin but also PC5B can process E3E2 from African CHIKV strains at the HRQRR64↓ST site, whereas a CHIKV strain of Asian origin is cleaved at RRQRR64↓SI by membranous and soluble furin, PC5A, PC5B, and PACE4 but not by PC7 or SKI-1. Using fluorogenic model peptides and recombinant convertases, we observed that the Asian strain E3E2 model peptide is cleaved most efficiently by furin and PC5A. This cleavage was also observed in CHIKV-infected cells and could be blocked by furin inhibitor decanoyl-RVKR-chloromethyl ketone. This inhibitor was compared with chloroquine for its ability to inhibit CHIKV spreading in myoblast cell cultures, a cell-type previously described as a natural target of this virus. Our results demonstrate the role of furin-like proteases in the processing of CHIKV particles and point out new approaches to inhibit this infection.


Orphanet Journal of Rare Diseases | 2012

Rescue of nonsense mutations by amlexanox in human cells

Sara Gonzalez-Hilarion; Terence Beghyn; Jieshuang Jia; Nadège Debreuck; Gonzague Berte; Kamel Mamchaoui; Vincent Mouly; Dieter C. Gruenert; Benoit Deprez; Fabrice Lejeune

BackgroundNonsense mutations are at the origin of many cancers and inherited genetic diseases. The consequence of nonsense mutations is often the absence of mutant gene expression due to the activation of an mRNA surveillance mechanism called nonsense-mediated mRNA decay (NMD). Strategies to rescue the expression of nonsense-containing mRNAs have been developed such as NMD inhibition or nonsense mutation readthrough.MethodsUsing a dedicated screening system, we sought molecules capable to block NMD. Additionally, 3 cell lines derived from patient cells and harboring a nonsense mutation were used to study the effect of the selected molecule on the level of nonsense-containing mRNAs and the synthesis of proteins from these mutant mRNAs.ResultsWe demonstrate here that amlexanox, a drug used for decades, not only induces an increase in nonsense-containing mRNAs amount in treated cells, but also leads to the synthesis of the full-length protein in an efficient manner. We also demonstrated that these full length proteins are functional.ConclusionsAs a result of this dual activity, amlexanox may be useful as a therapeutic approach for diseases caused by nonsense mutations.


Neuromuscular Disorders | 2006

Premature proliferative arrest of cricopharyngeal myoblasts in oculo-pharyngeal muscular dystrophy: Therapeutic perspectives of autologous myoblast transplantation

Sophie Périé; Kamel Mamchaoui; Vincent Mouly; Stéphane Blot; Belaı̈d Bouazza; Lars-Eric Thornell; Jean Lacau St Guily; Gillian Butler-Browne

Cultures of myoblasts isolated from cricopharyngeal muscles from patients with oculopharyngeal muscular dystrophy (OPMD) have been performed to study the effect of the expanded (GCG)8-13 repeat, located on the poly(A) binding protein nuclear-1 (PABPN1), on satellite cell phenotype. Cell cultures exhibited a reduced myogenicity, as well as a rapid decrease in proliferative lifespan, as compared to controls. The incorporation of BrdU decreased during the proliferative lifespan, due to a progressive accumulation of non-dividing cells. A lower fusion index was also observed, but myoblasts were able to form large myotubes when OPMD cultures were purified, although a rapid loss of myogenicity during successive passages was also observed. Myoblasts isolated from unaffected muscles did not show the defects observed in cricopharyngeal muscle cultures. The PABPN1 was predominantly located in nuclei of myoblasts and in both the nuclei and cytoplasm of myotubes in OPMD cultures. In vivo analysis of OPMD muscles showed that the number of satellite cells was slightly higher than that observed in age matched controls. Mutation of the PABPN1 in OPMD provokes premature senescence in dividing myoblasts, that may be due to intranuclear toxic aggregates. These results suggest that myoblast autografts, isolated from unaffected muscles, and injected into the dystrophic pharyngeal muscles, may be a useful therapeutic strategy to restore muscular function. Its tolerance and feasibility has been preclinically demonstrated in the dog.


Journal of Cell Science | 2014

Cellular microenvironments reveal defective mechanosensing responses and elevated YAP signaling in LMNA-mutated muscle precursors.

Anne T. Bertrand; Simindokht Ziaei; Camille Ehret; Hélène Duchemin; Kamel Mamchaoui; Anne Bigot; Michèle Mayer; Susana Quijano-Roy; Isabelle Desguerre; Jeanne Lainé; Rabah Ben Yaou; Gisèle Bonne; Catherine Coirault

ABSTRACT The mechanisms underlying the cell response to mechanical forces are crucial for muscle development and functionality. We aim to determine whether mutations of the LMNA gene (which encodes lamin A/C) causing congenital muscular dystrophy impair the ability of muscle precursors to sense tissue stiffness and to respond to mechanical challenge. We found that LMNA-mutated myoblasts embedded in soft matrix did not align along the gel axis, whereas control myoblasts did. LMNA-mutated myoblasts were unable to tune their cytoskeletal tension to the tissue stiffness as attested by inappropriate cell-matrix adhesion sites and cytoskeletal tension in soft versus rigid substrates or after mechanical challenge. Importantly, in soft two-dimensional (2D) and/or static three-dimensional (3D) conditions, LMNA-mutated myoblasts showed enhanced activation of the yes-associated protein (YAP) signaling pathway that was paradoxically reduced after cyclic stretch. siRNA-mediated downregulation of YAP reduced adhesion and actin stress fibers in LMNA myoblasts. This is the first demonstration that human myoblasts with LMNA mutations have mechanosensing defects through a YAP-dependent pathway. In addition, our data emphasize the crucial role of biophysical attributes of cellular microenvironment to the response of mechanosensing pathways in LMNA-mutated myoblasts.


Human Gene Therapy | 2009

Immortalized Skin Fibroblasts Expressing Conditional MyoD as a Renewable and Reliable Source of Converted Human Muscle Cells to Assess Therapeutic Strategies for Muscular Dystrophies: Validation of an Exon-Skipping Approach to Restore Dystrophin in Duchenne Muscular Dystrophy Cells

Soraya Chaouch; Vincent Mouly; Aurélie Goyenvalle; Adeline Vulin; Kamel Mamchaoui; Elisa Negroni; James P. Di Santo; Gillian Butler-Browne; Yvan Torrente; Luis García; Denis Furling

Abstract Numerous strategies are under development for the correction of deleterious effects of mutations in muscular dystrophies, and these strategies must be validated in compelling models. Cellular models seem straightforward to set up; however, the proliferative capacity of muscle cells isolated from dystrophic patients is limited, and in addition it is difficult to envisage the use of large muscle biopsies from patients to obtain enough cells for ex vivo assessments. To overcome these problems, we have devised a strategy to obtain, from a patient with Duchenne muscular dystrophy (DMD), an inexhaustible source of myogenic progenitor cells with a deletion of exons 49 and 50 in the dystrophin gene. Starting material consisted of dermal fibroblasts isolated from a skin biopsy taken in a noninvasive way. These fibroblasts were first immortalized by telomerase gene transfer. Subsequent cell lines were converted into myogenic cells by means of a lentiviral vector encoding an inducible MyoD construct. Before myogenic induction, engineered DMD fibroblasts were able to proliferate infinitely. Under induction conditions, they were converted into myogenic cells, which differentiated into large multinucleated myotubes. We used these DMD fibroblast cell lines to assess dystrophin rescue by using engineered U7 small nuclear RNAs harboring antisense sequences required to restore an in-frame dystrophin mRNA by skipping exon 51. Further molecular analyses showed dystrophin rescue ex vivo as well as in vivo after engrafting of treated cells into regenerating muscles in immunodeficient mice.


Molecular Therapy | 2014

Autologous Myoblast Transplantation for Oculopharyngeal Muscular Dystrophy: a Phase I/Iia Clinical Study

Sophie Périé; Capucine Trollet; Vincent Mouly; Valérie Vanneaux; Kamel Mamchaoui; Belaïd Bouazza; Jean Pierre Marolleau; Pascal Laforêt; Françoise Chapon; Bruno Eymard; Gillian Butler-Browne; Jérôme Larghero; Jean Lacau St Guily

Oculopharyngeal muscular dystrophy (OPMD) is a late-onset autosomal dominant genetic disease mainly characterized by ptosis and dysphagia. We conducted a phase I/IIa clinical study (ClinicalTrials.gov NCT00773227) using autologous myoblast transplantation following myotomy in adult OPMD patients. This study included 12 patients with clinical diagnosis of OPMD, indication for cricopharyngeal myotomy, and confirmed genetic diagnosis. The feasibility and safety end points of both autologous myoblast transplantation and the surgical procedure were assessed by videoendoscopy in addition to physical examinations. Potential therapeutic benefit was also assessed through videoendoscopy and videofluoroscopy of swallowing, quality of life score, dysphagia grade, and a drink test. Patients were injected with a median of 178 million myoblasts following myotomy. Short and long-term (2 years) safety and tolerability were observed in all the patients, with no adverse effects. There was an improvement in the quality of life score for all 12 patients, and no functional degradation in swallowing was observed for 10 patients. A cell dose-dependant improvement in swallowing was even observed in this study. This trial supports the hypothesis that a local injection of autologous myoblasts in the pharyngeal muscles is a safe and efficient procedure for OPMD patients.


Human Gene Therapy | 2013

Gene Correction of a Duchenne Muscular Dystrophy Mutation by Meganuclease-Enhanced Exon Knock-In

Linda Popplewell; Taeyoung Koo; Xavier Leclerc; Aymeric Duclert; Kamel Mamchaoui; Agnès Gouble; Vincent Mouly; Thomas Voit; Frédéric Cédrone; Olga Isman; Rafael J. Yáñez-Muñoz; George Dickson

Duchenne muscular dystrophy (DMD) is a severe inherited, muscle-wasting disorder caused by mutations in the DMD gene. Gene therapy development for DMD has concentrated on vector-based DMD minigene transfer, cell-based gene therapy using genetically modified adult muscle stem cells or healthy wild-type donor cells, and antisense oligonucleotide-induced exon-skipping therapy to restore the reading frame of the mutated DMD gene. This study is an investigation into DMD gene targeting-mediated correction of deletions in human patient myoblasts using a target-specific meganuclease (MN) and a homologous recombination repair matrix. The MN was designed to cleave within DMD intron 44, upstream of a deletion hotspot, and integration-competent lentiviral vectors expressing the nuclease (LVcMN) were generated. MN western blotting and deep gene sequencing for LVcMN-induced non-homologous end-joining InDels (microdeletions or microinsertions) confirmed efficient MN expression and activity in transduced DMD myoblasts. A homologous repair matrix carrying exons 45-52 (RM45-52) was designed and packaged into integration-deficient lentiviral vectors (IDLVs; LVdRM45-52). After cotransduction of DMD myoblasts harboring a deletion of exons 45 to 52 with LVcMN and LVdRM45-52 vectors, targeted knock-in of the RM45-52 region in the correct location in DMD intron 44, and expression of full-length, correctly spliced wild-type dystrophin mRNA containing exons 45-52 were observed. This work demonstrates that genome surgery on human DMD gene mutations can be achieved by MN-induced locus-specific genome cleavage and homologous recombination knock-in of deleted exons. The feasibility of human DMD gene repair in patient myoblasts has exciting therapeutic potential.

Collaboration


Dive into the Kamel Mamchaoui's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Thomas Voit

University College London

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Woodring E. Wright

University of Texas Southwestern Medical Center

View shared research outputs
Top Co-Authors

Avatar

Sergiu C. Blumen

Hillel Yaffe Medical Center

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge