Kamil Boratay Alici
Bilkent University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Kamil Boratay Alici.
international microwave symposium | 2007
Filiberto Bilotti; Alessandro Toscano; Lucio Vegni; Koray Aydin; Kamil Boratay Alici; Ekmel Ozbay
In this paper, we derive quasi-static equivalent-circuit models for the analysis and design of different types of artificial magnetic resonators-i.e., the multiple split-ring resonator, spiral resonator, and labyrinth resonator-which represent popular inclusions to synthesize artificial materials and metamaterials with anomalous values of the permeability in the microwave and millimeter-wave frequency ranges. The proposed models, derived in terms of equivalent circuits, represent an extension of the models presented in a recent publication. In particular, the extended models take into account the presence of a dielectric substrate hosting the metallic inclusions and the losses due to the finite conductivity of the conductors and the finite resistivity of the dielectrics. Exploiting these circuit models, it is possible to accurately predict not only the resonant frequency of the individual inclusions, but also their quality factor and the relative permeability of metamaterial samples made by given arrangements of such inclusions. Finally, the three models have been tested against full-wave simulations and measurements, showing a good accuracy. This result opens the door to a quick and accurate design of the artificial magnetic inclusions to fabricate real-life metamaterial samples with anomalous values of the permeability.
Applied Physics Letters | 2010
Zhaofeng Li; Rongkuo Zhao; Thomas Koschny; Maria Kafesaki; Kamil Boratay Alici; Evrim Colak; Humeyra Caglayan; Ekmel Ozbay; Costas M. Soukoulis
A uniaxial chiral metamaterial is constructed by double-layered four “U” split ring resonators mutually twisted by 90°. It shows a giant optical activity and circular dichroism. The retrieval results reveal that a negative refractive index is realized for circularly polarized waves due to the large chirality. The experimental results are in good agreement with the numerical results.
Journal of Applied Physics | 2007
Kamil Boratay Alici; Ekmel Ozbay
We studied electrically small resonant antennas composed of split ring resonators (SRR) and monopoles. The antennas considered have the same ring radius, but slightly different geometry. The resonance frequency depends on the geometry of the SRRs. Two SRR antennas are designed. The first one, which operates at 3.62 GHz, is demonstrated theoretically and experimentally. The size of this antenna is 0.095λ0×0.100λ0 and is low profile at the other dimension. The gain and directivity of the antenna was 2.38 and 5.46, respectively. The corresponding efficiency was 43.6%. The estimated radiation Q (rad Q=23.03) was much larger than the minimum radiation Q (min Q=1.78). The second one is a rather small SRR antenna in which the capacitance between the rings is increased. The size is reduced to 0.074λ0×0.079λ0. This structure is called serrated SRR (SSRR). Both antennas have similar far-field patterns but the efficiency of the SSRR antenna is less.
Optics Express | 2011
Kamil Boratay Alici; Adil Burak Turhan; Costas M. Soukoulis; Ekmel Ozbay
We designed, fabricated, and experimentally characterized thin absorbers utilizing both electrical and magnetic impedance matching at the near-infrared regime. The absorbers consist of four main layers: a metal back plate, dielectric spacer, and two artificial layers. One of the artificial layers provides electrical resonance and the other one provides magnetic resonance yielding a polarization independent broadband perfect absorption. The structure response remains similar for the wide angle of incidence due to the sub-wavelength unit cell size of the constituting artificial layers. The design is useful for applications such as thermal photovoltaics, sensors, and camouflage.
Applied Physics Letters | 2011
Zhaofeng Li; Kamil Boratay Alici; Evrim Colak; Ekmel Ozbay
A complementary bilayer cross-wire chiral metamaterial is proposed and studied experimentally and numerically. It exhibits giant optical activity and a small circular dichroism. The retrieval results reveal that a negative refractive index is realized for right circularly polarized waves due to the strong chirality. Our numerical results show that the mechanism of the chiral behavior at the resonance of lower frequency can be interpreted as the coupling effects between two sets of mutually twisted virtual magnetic dipoles, while the resonance of higher frequency shows complicated nonlocal features.
IEEE Transactions on Electromagnetic Compatibility | 2011
Filiberto Bilotti; Alessandro Toscano; Kamil Boratay Alici; Ekmel Ozbay; Lucio Vegni
In this paper, we present the design of miniaturized narrowband-microwave absorbers based on different kinds of magnetic inclusions. The operation of the proposed components originates from the resonance of a planar array of inclusions excited by an incoming wave with a given polarization. As in common absorber layouts, a 377 Ω resistive sheet is also used to absorb the electromagnetic energy of the impinging field. Since the planar array of magnetic inclusions behaves at its resonance as a perfect magnetic conductor, the resistive sheet is placed in close proximity of the resonating inclusions, without perturbing their resonance condition. In contrast to other typical absorber configurations presented in the literature, the absorber proposed in this paper is not backed by a metallic plate. This feature may be useful for stealth applications, as discussed thoroughly in the paper. The other interesting characteristic of the proposed absorbers is the subwavelength thickness, which has shown to depend only on the geometry of the basic resonant inclusions employed. At first, regular split-ring resonators (SSRs) disposed in an array configuration are considered and some application examples are presented. Absorbers based on SRRs are shown to reach thickness of the order of λ0/20. In order to further squeeze the electrical thickness of the absorbers, multiple SRRs and spiral resonators are also used. The employment of such inclusions leads to the design of extremely thin microwave absorbers, whose thickness may even be close to λ0/100. Finally, some examples of miniaturized absorbers suitable for a practical realization are proposed.
Journal of Applied Physics | 2010
Kamil Boratay Alici; Filiberto Bilotti; Lucio Vegni; Ekmel Ozbay
We designed, implemented, and experimentally characterized electrically thin microwave absorbers by using the metamaterial concept. The absorbers consist of (i) a metal back plate and an artificial magnetic material layer; (ii) metamaterial back plate and a resistive sheet layer. We investigated absorber performance in terms of absorbance, fractional bandwidth, and electrical thickness, all of which depend on the dimensions of the metamaterial unit cell and the distance between the back plate and metamaterial layer. As a proof of concept, we demonstrated a λ/4.7 thick absorber of type I, with a 99.8% absorption peak along with a 8% fractional bandwidth. We have shown that as the electrical size of the metamaterial unit cell decreases, the absorber electrical thickness can further be reduced. We investigated this concept by using two different magnetic metamaterial inclusions: the split-ring resonator (SRR) and multiple SSR (MSRR). We have also demonstrated experimentally a λ/4.7 and a λ/4.2 thick absorber...
Applied Physics Letters | 2007
Kamil Boratay Alici; Filiberto Bilotti; Lucio Vegni; Ekmel Ozbay
Experimental and numerical studies of μ-negative (MNG) materials such as multisplit ring resonators (MSRRs) and spiral resonators (SRs) are presented. The resonance frequency of the structures is determined by the transmission measurements and minimum electrical size of λ0∕17 for the MSRRs and of λ0∕82 for the SRs observed. These MNG materials can be easily produced by the well developed printed circuit board and optical lithography techniques. They are promising elements for the development of high resolution metamaterial lenses and electrically small antennas.
Journal of Physics D | 2008
Kamil Boratay Alici; Ekmel Ozbay
We numerically and experimentally investigate a fishnet metamaterial operating at around 100 GHz. Qualitative effective medium theory and standard retrieval characterization methods are performed to demonstrate the double negative nature of the fishnet structure. This study is extended to include the effects of a finite number of unit cells at each layer and the number of layers in the propagation direction. Finally, we study the response of the metamaterial layer when the metamaterial plane normal and the propagation vector are not parallel.
Optics Express | 2012
Zhaofeng Li; Kamil Boratay Alici; Humeyra Caglayan; Maria Kafesaki; Costas M. Soukoulis; Ekmel Ozbay
A composite chiral metamaterial (CCMM) is designed and studied both numerically and experimentally. The CCMM is constructed by the combination of a continuous metallic wires structure and a purely chiral metamaterial (CMM) that consists of conjugated Rosettes. For the CMM, only very small, useful bands of negative index can be obtained for circularly polarized waves. These bands are all above the chiral resonance frequencies because of the high value of the effective parameter of relative permittivity ε. After the addition of the continuous metallic wires, which provide negative permittivity, the high value of ε can be partially compensated. Thus, a negative index band for the left circularly polarized wave that is below the chiral resonance frequency is obtained for the CCMM. At the same time, a negative index band for the right circularly polarized wave that is above the chiral resonance frequency is also obtained. Furthermore, both negative index bands correspond to the transmission peaks and have high values of the figure of merit. Therefore, the CCMM design that is proposed here is more suitable than the CMM for the construction of chiral metamaterials with a negative index.