Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kamil Kus is active.

Publication


Featured researches published by Kamil Kus.


Biochemical Pharmacology | 2015

The liver-selective NO donor, V-PYRRO/NO, protects against liver steatosis and improves postprandial glucose tolerance in mice fed high fat diet

Edyta Maslak; Piotr Zabielski; Kamila Kochan; Kamil Kus; Agnieszka Jasztal; Barbara Sitek; Bartosz Proniewski; Tomasz Wojcik; Katarzyna Gula; Agnieszka Kij; Maria Walczak; Malgorzata Baranska; Adrian Chabowski; Ryan J. Holland; Joseph E. Saavedra; Larry K. Keefer; Stefan Chlopicki

BACKGROUND AND PURPOSE There is an unmet medical need for novel NAFLD treatments. Here we have examined the effects of liver-selective NO donor (V-PYRRO/NO) as compared with metformin on hepatic steatosis and glucose tolerance in mice fed high fat diet. MATERIAL AND METHODS Effects of V-PYRRO/NO (5 mgkg(-1)) or metformin (616 mgkg(-1)) were examined in C57BL/6J mice fed high fat diet (HF, 60 kcal% fat). Quantitative determination of steatosis, liver fatty acid composition and western blot analysis of selected proteins involved in mitochondrial biogenesis, fatty acid de novo synthesis and oxidation, triacylglycerols and cholesterol transport from the liver were performed. Liver NOx and nitrate concentration and blood biochemistry were also analyzed. RESULTS V-PYRRO/NO and metformin reduced liver steatosis with simultaneous reduction of total liver triacylglycerols, diacylglycerols and ceramides fraction and reversed HF-induced decrease in UFA/SFA ratio. V-PYRRO/NO substantially improved postprandial glucose tolerance, while the effect of metformin was modest and more pronounced on HOMA IR index. The anti-steatotic mechanism of V-PYRRO/NO was dependent on NO release, differed from that of metformin and involved improved glucose tolerance and inhibition of de novo fatty acid synthesis by Akt activation and ACC phosphorylation. In turn, major mechanism of metformin action involved increased expression of proteins implicated in mitochondrial biogenesis and metabolism (PGC-1α, PPARα, COX IV, cytochrome c, HADHSC). CONCLUSIONS V-PYRRO/NO acts as a liver-specific NO donor prodrug affording pronounced anti-steatotic effects and may represent an efficient, mechanistically novel approach to prevent liver steatosis and insulin resistance.


Electrophoresis | 2012

Capillary electrophoresis/frontal analysis versus equilibrium dialysis in dexamethasone sodium phosphate‐serum albumin binding studies

Anna Gonciarz; Kamil Kus; Malgorzata Szafarz; Maria Walczak; Agnieszka Zakrzewska; Joanna Szymura-Oleksiak

Plasma protein binding of drugs may have significant effect on its pharmacodynamic, toxicological and pharmacokinetic properties, since only the free drug can pass across biological membrane and get to its specific site of action. Many drugs show a high affinity to albumin which is the most abundant plasma protein. In the present study capillary electrophoresis in the frontal analysis mode (CE/FA), as promising technique for assessment of drug–protein interaction was used. The free drug concentration was measured from height of the frontal peak and calculated based on the external drug standard in absence of protein. With a known concentration of total drug, the percentage of protein bound drug was determined. The binding parameters were also estimated based on the equilibrium dialysis experiment which is considered to be a reference method. This study was designed to examine the interaction of dexamethasone sodium phosphate (DXM) with BSA and HSA under simulated physiological conditions (pH 7.4, 67 mM phosphate buffer, I = 0.17). Using fixed, at physiological level, HSA and BSA concentrations and increasing DXM concentrations, the number of binding sites (n) and binding constant (Ka) was calculated from both nonlinear regression fitting and Scatchard Plot. Despite some differences, it can be concluded that the CE/FA is comparable with equilibrium dialysis, but since the first one offers advantages such as low sample consumption, short analysis time, and high separation efficiency, it can be used in high‐throughput screening of drug protein binding at the early stage of drug discovery. Interspecies differences in binding of a drug to albumins have been observed and it should be taken into account in interpretation of the results.


Pharmacological Reports | 2015

Towards a comprehensive endothelial biomarkers profiling and endothelium-guided pharmacotherapy

Maria Walczak; Joanna Suraj; Kamil Kus; Agnieszka Kij; Agnieszka Zakrzewska; Stefan Chlopicki

Endothelial dysfunction has prognostic, diagnostic and therapeutic significance in cardiovascular disease, but the endothelial phenotype is still not measured routinely to stratify the cardiovascular risk and tailor therapy. Flow-mediated dilation (FMD), the gold-standard technique for the functional assessment of endothelial function that is increasingly used in clinical settings measures the nitric oxide (NO)-dependent function only. However, the endothelial dysfunction involves a plethora of pathophysiologically important biochemical changes beyond alterations in the NO bioavailability. Still, in many diseases, some plasma protein biomarkers reflecting the pro-thrombotic and the pro-inflammatory endothelial phenotypes have poor selectivity, specificity, and a weak predictive value if they are used alone. Therefore, a multi biomarker strategy seems to be a reasonable and promising alternative. Here, we propose a multi-biomarker strategy to diagnose the endothelial dysfunction and to monitor the efficacy of an endothelium-targeted therapy. This strategy is based on the panel of endothelial biomarkers, reflecting various aspects and mechanisms of dysfunctional endothelium. The potential of an advanced analytical platform like the ultra-high performance liquid chromatography (UHPLC) coupled to mass spectrometry-based multiple reaction monitoring for simultaneous quantification of multiple endothelial biomakers is also discussed.


FEBS Letters | 2016

Carbon monoxide shifts energetic metabolism from glycolysis to oxidative phosphorylation in endothelial cells

Patrycja Kaczara; Roberto Motterlini; Kamil Kus; Agnieszka Zakrzewska; Andrey Y. Abramov; Stefan Chlopicki

Carbon monoxide (CO) modulates mitochondrial respiration, but the mechanisms involved are not completely understood. The aim of the present study was to investigate the acute effects of CO on bioenergetics and metabolism in intact EA.hy926 endothelial cells using live cell imaging techniques. Our findings indicate that CORM‐401, a compound that liberates CO, reduces ATP production from glycolysis, and induces a mild mitochondrial depolarization. In addition, CO from CORM‐401 increases mitochondrial calcium and activates complexes I and II. The subsequent increase in mitochondrial respiration leads to ATP production through oxidative phosphorylation. Thus, our results show that nonactivated endothelial cells rely primarily on glycolysis, but in the presence of CO, mitochondrial Ca2+ increases and activates respiration that shifts the metabolism of endothelial cells from glycolysis‐ to oxidative phosphorylation‐dependent ATP production.


Drug Metabolism and Disposition | 2015

Hepatoselective Nitric Oxide (NO) Donors, V-PYRRO/NO and V-PROLI/NO, in Nonalcoholic Fatty Liver Disease: A Comparison of Antisteatotic Effects with the Biotransformation and Pharmacokinetics

Kamil Kus; Maria Walczak; Edyta Maslak; Agnieszka Zakrzewska; Anna Gonciarz-Dytman; Piotr Zabielski; Barbara Sitek; Krystyna Wandzel; Agnieszka Kij; Adrian Chabowski; Ryan J. Holland; Joseph E. Saavedra; Larry K. Keefer; Stefan Chlopicki

V-PYRRO/NO [O(2)-vinyl-1-(pyrrolidin-1-yl)diazen-1-ium-1,2-diolate] and V-PROLI/NO (O2-vinyl-[2-(carboxylato)pyrrolidin-1-yl]diazen-1-ium-1,2-diolate), two structurally similar diazeniumdiolate derivatives, were designed as liver-selective prodrugs that are metabolized by cytochrome P450 isoenzymes, with subsequent release of nitric oxide (NO). Yet, their efficacy in the treatment of nonalcoholic fatty liver disease (NAFLD) and their comparative pharmacokinetic and metabolic profiles have not been characterized. The aim of the present work was to compare the effects of V-PYRRO/NO and V-PROLI/NO on liver steatosis, glucose tolerance, and liver fatty acid composition in C57BL/6J mice fed a high-fat diet, as well as to comprehensively characterize the ADME (absorption, distribution, metabolism and excretion) profiles of both NO donors. Despite their similar structure, V-PYRRO/NO and V-PROLI/NO showed differences in pharmacological efficacy in the murine model of NAFLD. V-PYRRO/NO, but not V-PROLI/NO, attenuated liver steatosis, improved glucose tolerance, and favorably modified fatty acid composition in the liver. Both compounds were characterized by rapid absorption following i.p. administration, rapid elimination from the body, and incomplete bioavailability. However, V-PYRRO/NO was eliminated mainly by the liver, whereas V-PROLI/NO was excreted mostly in unchanged form by the kidney. V-PYRRO/NO was metabolized by CYP2E1, CYP2C9, CYP1A2, and CYP3A4, whereas V-PROLI/NO was metabolized mainly by CYP1A2. Importantly, V-PYRRO/NO was a better NO releaser in vivo and in the isolated, perfused liver than V-PROLI/NO, an effect compatible with the superior antisteatotic activity of V-PYRRO/NO. In conclusion, V-PYRRO/NO displayed a pronounced antisteatotic effect associated with liver-targeted NO release, whereas V-PROLI/NO showed low effectiveness, was not taken up by the liver, and was eliminated mostly in unchanged form by the kidney.


FEBS Journal | 2018

CORM‐401 induces calcium signalling, NO increase and activation of pentose phosphate pathway in endothelial cells

Patrycja Kaczara; Bartosz Proniewski; Christopher Lovejoy; Kamil Kus; Roberto Motterlini; Andrey Y. Abramov; Stefan Chlopicki

Carbon monoxide‐releasing molecules (CO‐RMs) induce nitric oxide (NO) release (which requires NADPH), and Ca2+‐dependent signalling; however, their contribution in mediating endothelial responses to CO‐RMs is not clear. Here, we studied the effects of CO liberated from CORM‐401 on NO production, calcium signalling and pentose phosphate pathway (PPP) activity in human endothelial cell line (EA.hy926). CORM‐401 induced NO production and two types of calcium signalling: a peak‐like calcium signal and a gradual increase in cytosolic calcium. CORM‐401‐induced peak‐like calcium signal, originating from endoplasmic reticulum, was reduced by thapsigargin, a SERCA inhibitor, and by dantrolene, a ryanodine receptors (RyR) inhibitor. In contrast, the phospholipase C inhibitor U73122 did not significantly affect peak‐like calcium signalling, but a slow and progressive CORM‐401‐induced increase in cytosolic calcium was dependent on store‐operated calcium entrance. CORM‐401 augmented coupling of endoplasmic reticulum and plasmalemmal store‐operated calcium channels. Interestingly, in the presence of NO synthase inhibitor (l‐NAME) CORM‐401‐induced increases in NO and cytosolic calcium were both abrogated. CORM‐401‐induced calcium signalling was also inhibited by superoxide dismutase (poly(ethylene glycol)‐SOD). Furthermore, CORM‐401 accelerated PPP, increased NADPH concentration and decreased the ratio of reduced to oxidized glutathione (GSH/GSSG). Importantly, CORM‐401‐induced NO increase was inhibited by the PPP inhibitor 6‐aminonicotinamide (6‐AN), but neither by dantrolene nor by an inhibitor of large‐conductance calcium‐regulated potassium ion channel (paxilline). The results identify the primary role of CO‐induced NO increase in the regulation of endothelial calcium signalling, that may have important consequences in controlling endothelial function.


Pharmacological Reports | 2017

Differential effects of liver steatosis on pharmacokinetic profile of two closely related hepatoselective NO-donors; V-PYRRO/NO and V-PROLI/NO

Kamil Kus; Edyta Kus; Agnieszka Zakrzewska; Wojciech Jawień; Barbara Sitek; Maria Walczak; Stefan Chlopicki

PURPOSE To analyze the effect of liver steatosis and obesity on pharmacokinetic profile of two structurally-related liver-selective NO-donors - V-PYRRO/NO and V-PROLI/NO. METHODS C57BL/6 mice were fed control or high-fat diet for 15 weeks to induced liver steatosis and obesity (HFD mice). Pharmacokinetics and renal elimination studies were conducted in vivo following iv dosing of V-PYRRO/NO and V-PROLI/NO (0.03 mmol/kg). Hepatic clearance was evaluated ex vivo in the isolated perfused mice liver and in vitro with the use of liver microsomes. RESULTS V-PYRRO/NO and V-PROLI/NO, despite similar structure, displayed different pharmacokinetic properties. V-PYRRO/NO was uptaken and metabolized by the liver, while V-PROLI/NO was eliminated unchanged with urine. In HFD mice, despite increased CYP450 metabolism of V-PYRRO/NO the elimination rate was slower most likely due to the impairment of hepatic microcirculation caused by liver fat accumulation. In turn, in HFD mice renal clearence of V-PROLI/NO was accelerated and volume of distribution was increased most likely due to additional intracellular water in HFD mice. CONCLUSIONS The pharmacokinetics of V-PROLI/NO, the novel proline-based analog of V-PYRRO/NO with additional single carboxylic acid moiety, attached to the molecule of V-PYRRO/NO to improve the water solubility, was differently affected by liver steatosis and obesity as compared with the parent compound V-PYRRO/NO.PURPOSE To analyze the effect of liver steatosis and obesity on pharmacokinetic profile of two structurally-related liver-selective NO-donors - V-PYRRO/NO and V-PROLI/NO. METHODS C57BL/6 mice were fed control or high-fat diet for 15 weeks to induced liver steatosis and obesity (HFD mice). Pharmacokinetics and renal elimination studies were conducted in vivo following iv dosing of V-PYRRO/NO and V-PROLI/NO (0.03mmol/kg). Hepatic clearance was evaluated ex vivo in the isolated perfused mice liver and in vitro with the use of liver microsomes. RESULTS V-PYRRO/NO and V-PROLI/NO, despite similar structure, displayed different pharmacokinetic properties. V-PYRRO/NO was uptaken and metabolized by the liver, while V-PROLI/NO was eliminated unchanged with urine. In HFD mice, despite increased CYP450 metabolism of V-PYRRO/NO the elimination rate was slower most likely due to the impairment of hepatic microcirculation caused by liver fat accumulation. In turn, in HFD mice renal clearence of V-PROLI/NO was accelerated and volume of distribution was increased most likely due to additional intracellular water in HFD mice. CONCLUSIONS The pharmacokinetics of V-PROLI/NO, the novel proline-based analog of V-PYRRO/NO with additional single carboxylic acid moiety, attached to the molecule of V-PYRRO/NO to improve the water solubility, was differently affected by liver steatosis and obesity as compared with the parent compound V-PYRRO/NO.


Biomedical Chromatography | 2013

Liquid chromatography-mass spectrometry method for the analysis of 1,4-dimethylpyridinium in rat plasma--application to pharmacokinetic studies.

Malgorzata Szafarz; Joanna Szymura-Oleksiak; Agnieszka Zakrzewska; Maria Walczak; Kamil Kus; Anna Gonciarz

A sensitive and specific liquid chromatography electrospray ionization-mass spectrometry method for determination of 1,4-dimethylpyridinium (1,4-DMP) in rat plasma has been developed and validated. Chromatography was performed on an Aquasil C(18) analytical column (4.6 × 150 mm, 5 µm, Thermo Scientific, Rockford, IL, USA) with isocratic elution using a mobile phase containing acetonitrile and water with an addition of 0.1% of formic acid. Detection was achieved by an Applied Biosystems MDS Sciex (Concord, Ontario, Canada) API 2000 triple quadrupole mass spectrometer. Electrospray ionization was used for ion production. The limit of detection in the single ion monitoring mode was found to be 10 ng/mL. The limit of quantification was 50 ng/mL. The precision and accuracy for both within-day and between-day determination of 1,4-dimethylpyridinium was 2.4-7.56 and 90.93-111.48%. The results of this analytical method validation allow pharmacokinetic studies to be carried out in rats. The method was used for the pilot study of the pharmacokinetic behavior of 1,4-DMP in rats after intravenous administration.


Frontiers in Pharmacology | 2018

The Deletion of Endothelial Sodium Channel α (αENaC) Impairs Endothelium-Dependent Vasodilation and Endothelial Barrier Integrity in Endotoxemia in Vivo

Magdalena Sternak; Anna Bar; Mateusz G. Adamski; Tasnim Mohaissen; Brygida Marczyk; Anna Kieronska; Marta Stojak; Kamil Kus; Antoine Tarjus; Frederic Jaisser; Stefan Chlopicki

The role of epithelial sodium channel (ENaC) activity in the regulation of endothelial function is not clear. Here, we analyze the role of ENaC in the regulation of endothelium-dependent vasodilation and endothelial permeability in vivo in mice with conditional αENaC subunit gene inactivation in the endothelium (endo-αENaCKO mice) using unique MRI-based analysis of acetylcholine-, flow-mediated dilation and vascular permeability. Mice were challenged or not with lipopolysaccharide (LPS, from Salmonella typhosa, 10 mg/kg, i.p.). In addition, changes in vascular permeability in ex vivo organs were analyzed by Evans Blue assay, while changes in vascular permeability in perfused mesenteric artery were determined by a FITC-dextran-based assay. In basal conditions, Ach-induced response was completely lost, flow-induced vasodilation was inhibited approximately by half but endothelial permeability was not changed in endo-αENaCKO vs. control mice. In LPS-treated mice, both Ach- and flow-induced vasodilation was more severely impaired in endo-αENaCKO vs. control mice. There was also a dramatic increase in permeability in lungs, brain and isolated vessels as evidenced by in vivo and ex vivo analysis in endotoxemic endo-αENaCKO vs. control mice. The impaired endothelial function in endotoxemia in endo-αENaCKO was associated with a decrease of lectin and CD31 endothelial staining in the lung as compared with control mice. In conclusion, the activity of endothelial ENaC in vivo contributes to endothelial-dependent vasodilation in the physiological conditions and the preservation of endothelial barrier integrity in endotoxemia.


Frontiers in Immunology | 2018

Immuno-Spin Trapping-Based Detection of Oxidative Modifications in Cardiomyocytes and Coronary Endothelium in the Progression of Heart Failure in Tgαq*44 Mice

Bartosz Proniewski; Joanna Czarny; Tamara I. Khomich; Kamil Kus; Agnieszka Zakrzewska; Stefan Chlopicki

Recent studies suggest both beneficial and detrimental role of increased reactive oxygen species and oxidative stress in heart failure (HF). However, it is not clear at which stage oxidative stress and oxidative modifications occur in the endothelium in relation to cardiomyocytes in non-ischemic HF. Furthermore, most methods used to date to study oxidative stress are either non-specific or require tissue homogenization. In this study, we used immuno-spin trapping (IST) technique with fluorescent microscopy-based detection of DMPO nitrone adducts to localize and quantify oxidative modifications of the hearts from Tgαq*44 mice; a murine model of HF driven by cardiomyocyte-specific overexpression of Gαq* protein. Tgαq*44 mice and age-matched FVB controls at early, transition, and late stages of HF progression were injected with DMPO in vivo and analyzed ex vivo for DMPO nitrone adducts signals. Progressive oxidative modifications in cardiomyocytes, as evidenced by the elevation of DMPO nitrone adducts, were detected in hearts from 10- to 16-month-old, but not in 8-month-old Tgαq*44 mice, as compared with age-matched FVB mice. The DMPO nitrone adducts were detected in left and right ventricle, septum, and papillary muscle. Surprisingly, significant elevation of DMPO nitrone adducts was also present in the coronary endothelium both in large arteries and in microcirculation simultaneously, as in cardiomyocytes, starting from 10-month-old Tgαq*44 mice. On the other hand, superoxide production in heart homogenates was elevated already in 6-month-old Tgαq*44 mice and progressively increased to high levels in 14-month-old Tgαq*44 mice, while the enzymatic activity of catalase, glutathione reductase, and glutathione peroxidase was all elevated as early as in 4-month-old Tgαq*44 mice and stayed at a similar level in 14-month-old Tgαq*44. In summary, this study demonstrates that IST represents a unique method that allows to quantify oxidative modifications in cardiomyocytes and coronary endothelium in the heart. In Tgαq*44 mice with slowly developing HF, driven by cardiomyocyte-specific overexpression of Gαq* protein, an increase in superoxide production, despite compensatory activation of antioxidative mechanisms, results in the development of oxidative modifications not only in cardiomyocytes but also in coronary endothelium, at the transition phase of HF, before the end-stage disease.

Collaboration


Dive into the Kamil Kus's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Maria Walczak

Jagiellonian University Medical College

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Malgorzata Szafarz

Jagiellonian University Medical College

View shared research outputs
Top Co-Authors

Avatar

Adrian Chabowski

Medical University of Białystok

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Edyta Maslak

Jagiellonian University

View shared research outputs
Researchain Logo
Decentralizing Knowledge