Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kamil Paduszyński is active.

Publication


Featured researches published by Kamil Paduszyński.


Journal of Physical Chemistry B | 2012

Thermodynamic Modeling of Ionic Liquid Systems: Development and Detailed Overview of Novel Methodology Based on the PC-SAFT

Kamil Paduszyński; Urszula Domańska

We present the results of an extensive study on a novel approach of modeling ionic liquids (ILs) and their mixtures with molecular compounds, incorporating perturbed-chain statistical associating fluid theory (PC-SAFT). PC-SAFT was used to calculate the thermodynamic properties of different homologous series of ILs based on the bis(trifluormethylsulfonyl)imide anion ([NTf2]). First, pure fluid parameters were obtained for each IL by means of fitting the model predictions to experimental liquid densities over a broad range of temperature and pressure. The reliability and physical significance of the parameters as well as the employed molecular scheme were tested by calculation of density, vapor pressure, and other properties of pure ILs (e.g., critical properties, normal boiling point). Additionally, the surface tension of pure ILs was calculated by coupling the PC-SAFT equation of state with density gradient theory (DGT). All correlated/predicted results were compared with literature experimental or simulation data. Afterward, we attempted to model various thermodynamic properties of some binary systems composed of IL and organic solvent or water. The properties under study were the binary vapor-liquid, liquid-liquid, and solid-liquid equilibria and the excess enthalpies of mixing. To calculate cross-interaction energies we used the standard combining rules of Lorentz-Berthelot, Kleiner-Sadowski, and Wolbach-Sandler. It was shown that incorporation of temperature-dependent binary corrections was required to obtain much more accurate results than in the case of conventional predictions. Binary corrections were adjusted to infinite dilution activity coefficients of a particular solute in a given IL determined experimentally or predicted by means of the modified UNIFAC (Dortmund) group contribution method. We concluded that the latter method allows accurate and reliable calculations of bulk-phase properties in a totally predictive manner.


Journal of Chemical Information and Modeling | 2014

Viscosity of ionic liquids: an extensive database and a new group contribution model based on a feed-forward artificial neural network.

Kamil Paduszyński; Urszula Domańska

A knowledge of various thermophysical (in particular transport) properties of ionic liquids (ILs) is crucial from the point of view of potential applications of these fluids in chemical and related industries. In this work, over 13 000 data points of temperature- and pressure-dependent viscosity of 1484 ILs were retrieved from more than 450 research papers published in the open literature in the last three decades. The data were critically revised and then used to develop and test a new model allowing in silico predictions of the viscosities of ILs on the basis of the chemical structures of their cations and anions. The model employs a two-layer feed-forward artificial neural network (FFANN) strategy to represent the relationship between the viscosity and the input variables: temperature, pressure, and group contributions (GCs). In total, the resulting GC-FFANN model employs 242 GC-type molecular descriptors that are capable of accurately representing the viscosity behavior of ILs composed of 901 distinct ions. The neural network training, validation, and testing processes, involving 90, 5, and 5% of the whole data pool, respectively, gave mean square errors of 0.0334, 0.0595, and 0.0603 log units, corresponding to squared correlation coefficients of 0.986, 0.973, and 0.972 and overall relative deviations at the level of 11.1, 13.8, and 14.7%, respectively. The results calculated in this work were shown be more accurate than those obtained with the best current GC model for viscosity of ILs described in the literature.


Journal of Physical Chemistry B | 2011

Limiting activity coefficients and gas-liquid partition coefficients of various solutes in piperidinium ionic liquids: measurements and LSER calculations.

Kamil Paduszyński; Urszula Domańska

This paper is a continuation of our systematic investigations on piperidinium ionic liquids and presents new data on activity coefficients at infinite dilution for 43 solutes: linear and branched alkanes, cycloalkanes, alkenes, alkynes, benzene, alkylbenzenes, alcohols, water, thiophene, tetrahyrdofuran (THF), methyl tert-butyl ether (MTBE), linear ethers, acetone, and linear ketones in the ionic liquid 1-butyl-1-methyl-piperidinium bis(trifluoromethylsulfonyl)imide, [BMPIP][NTf2]. The data were determined by gas-liquid chromatography (GLC) at temperatures from 308.15 to 358.15 K. These values were compared to those previously published for the bis-(trifluoromethylsulfonyl)imide-based ionic liquids. The partial molar excess enthalpies ΔH1(E,∞) and entropies ΔS1(E,∞) at infinite dilution were calculated from the experimental γ13(∞) values obtained over the temperature range. The values of the selectivities for different separation problems were calculated from γ13(∞) and compared to literature values for N-methyl-2-pyrrolidinone (NMP), sulfolane, and additional ionic liquids. Experimental limiting activity coefficients were used to calculate gas-IL partition coefficients of solutes, K(L). The modeling with specific linear solvation energy relationship (LSER) equations was performed for data obtained in this work and those reported earlier for 1-butyl-1-methylpiperidinium thiocyanate, [BMPIP][SCN].


Journal of Physical Chemistry B | 2008

Phase Equilibria Study in Binary Systems (Tetra-n-butylphosphonium Tosylate Ionic Liquid + 1-Alcohol, or Benzene, or n-Alkylbenzene)

Urszula Domańska; Kamil Paduszyński

Ambient pressure (solid + liquid) equilibria (SLE) and (liquid + liquid) equilibria (LLE) of binary systems--ionic liquid (IL) tetra- n-butylphosphonium p-toluenesulfonate + 1-alcohol (1-butanol, 1-hexanol, 1-octanol, 1-decanol, or 1-dodecanol), benzene, or n-alkylbenzene (toluene, ethylbenzene, n-propylbenzene)-have been determined by using dynamic method in a broad range of mole fractions and temperatures from 250 to 335 K. For binaries containing alcohol, simple eutectic diagrams were observed with complete miscibility in the liquid phase. Only in the case of system [IL + n-propylbenzene] was mutual immiscibility with an upper critical solution temperature (UCST) with low solubility of the IL in the alcohol and high solubility of the alcohol in the IL detected. The basic thermal properties of pure IL, i.e., melting and glass-transition temperatures as well as enthalpy of melting, have been measured with differential scanning microcalorimetry technique (DSC). Well-known UNIQUAC, Wilson, NRTL, NRTL1, and NRTL2 equations have been fitted to obtain experimental data sets. For the system containing immiscibility gap [IL + n-propylbenzene], parameters of the equations have been derived only from SLE data. As a measure of goodness of correlations, root-mean square deviations of temperature have been used. These experimental results were compared to the previously measured binary systems with tetra- n-butylphosphonium methanesulfonate. Changing anion from methanesulfonate to p-toluenesulfonate decreases solubilities in systems with alcohols and increases the solubilities in binary systems with benzene and alkylbenzenes.


Journal of Physical Chemistry B | 2013

Excess Enthalpies of Mixing of Piperidinium Ionic Liquids with Short-Chain Alcohols: Measurements and PC-SAFT Modeling

Kamil Paduszyński; Marek Królikowski; Urszula Domańska

This work is a continuation of our systematic study on thermodynamic properties of 1-n-alkyl-1-methylpiperdinium bis[(trifluoromethyl)sulfonyl]imides homologous series of ionic liquids ([CnC1Pip][NTf2]). Excess enthalpies of mixing (H(E)) of four binary systems containing two ionic liquids, namely [C4C1Pip][NTf2] and [C6C1Pip][NTf2], and two short-chain alcohols, namely ethanol and 1-propanol, were measured by isothermal titration calorimetry. Alcohol-to-ionic liquid and ionic liquid-to-alcohol titration experiments were carried out at temperature T = 298.15 K and atmospheric pressure. The experimental data were modeled in terms of perturbed-chain statistical associating fluid theory (PC-SAFT). Wolbach-Sandler combining rules were adopted in order to account for ionic liquid-alcohol cross-association. The model was applied in a conventional manner (i.e., without any binary corrections) as well as in a novel predictive mode developed previously by our group [Paduszyński, K.; Domańska, U. J. Phys. Chem. B 2012, 116, 5002-5018; Domańska et al. J. Phys. Chem. B 2012, 116, 8191-8200]. The latter approach employs temperature-dependent binary correction fitted to experimental limiting activity coefficient of alcohol in ionic liquid.


Journal of Physical Chemistry B | 2012

Perturbed-Chain SAFT as a Versatile Tool for Thermodynamic Modeling of Binary Mixtures Containing Isoquinolinium Ionic Liquids

Urszula Domańska; Maciej Zawadzki; Kamil Paduszyński; Marek Królikowski

This contribution reports a recapitulation of our experimental and modeling study on thermodynamic behavior of binary systems containing N-alkylisoquinolinium ionic liquids (ILs) based on bis(trifluoromethylsulfonyl)imide anion, [CniQuin][NTf2] (n = 4,6,8). In particular, we report isothermal vapor-liquid equilibrium (VLE) phase diagrams and molar excess enthalpies of mixing (H(E)) for binary mixtures of [C8iQuin][NTf2] IL with various organic solutes including benzene, toluene, thiophene, pyridine, and butan-1-ol. The measured VLE data represented simple homozeotropic behavior with either negative or positive deviations from ideality, depending on polarity of the solute, temperature, and mole fraction of IL. In turn, the obtained data on H(E) were negative and positive for the mixtures containing aromatic hydrocarbons or thiophene and butan-1-ol, respectively, in the whole range of ILs concentration. All of the measured and some previously published data regarding phase behavior of [C8iQuin][NTf2] IL were analyzed and successfully described in terms of perturbed-chain statistical associating fluid theory (PC-SAFT). The methodology used in this work was described by us previously. In general, the proposed modeling results in VLE diagrams, which are in excellent agreement with experimental data. In the case of H(E), the results obtained are good as well but not so satisfactory such as those for VLE. Nevertheless, they seem to be very promising if one take into account the simplicity of the utilized molecular model against significant complexity of IL-based systems. Thus, we concluded that PC-SAFT equation of state can be viewed as a powerful and robust tool for modeling of systems involving ILs.


Journal of Physical Chemistry B | 2013

Renewable Feedstocks in Green Solvents: Thermodynamic Study on Phase Diagrams of d-Sorbitol and Xylitol with Dicyanamide Based Ionic Liquids

Kamil Paduszyński; Marcin Okuniewski; Urszula Domańska

Experimental and theoretical studies on thermodynamic properties of three ionic liquids based on dicyanamide anion (namely, 1-butyl-3-methylimidazolium dicyanamide, 1-butyl-1-methylpyrrolidinium dicyanamide, and 1-butyl-1-methylpiperidinium dicyanamide) and their binary mixtures with sugar alcohols (D-sorbitol and xylitol) were conducted in order to assess the applicability of the salts ionic liquids for dissolution of those biomass-related materials. Density and dynamic viscosity (at ambient pressure) of pure ionic liquids are reported in the temperature range from T = 293.15 to 363.15 K. Solid-liquid equilibrium phase diagrams in binary systems {sugar alcohol + ionic liquid} were measured with dynamic method up to the fusion temperature of sugar alcohol. The impact of the chemical structure of both the ionic liquid and sugar alcohol were established and discussed. For the very first time, the experimental solubility data were reproduced and analyzed in terms of equation of state rooted in statistical mechanics. For this purpose, perturbed-chain statistical associating fluid theory (PC-SAFT) was employed. In particular, new molecular schemes for the ionic liquids, D-sorbitol, and xylitol were proposed, and then the pure chemicals were parametrized by using available density and vapor pressure data. The model allowed accurate correlation of pure fluid properties for both ionic liquids and sugar alcohols, when the association term is taken into account. The results of solid-liquid equilibria modeling were also satisfactory. However, one or two adjustable binary corrections to the adopted combining rules were required to be adjusted in order to accurately capture the phase behavior. It was shown that a consistent thermodynamic description of extremely complex systems can be achieved by using relatively simple (but physically grounded) theoretical tools and molecular schemes.


Journal of Physical Chemistry B | 2015

Thermodynamic Study of Binary Mixtures of 1-Butyl-1-methylpyrrolidinium Dicyanamide Ionic Liquid with Molecular Solvents: New Experimental Data and Modeling with PC-SAFT Equation of State

Kamil Paduszyński; Elena Vadimovna Lukoshko; Marek Królikowski; Urszula Domańska; Jerzy Szydłowski

This work is concerned with thermodynamic properties of binary mixtures composed of 1-butyl-1-methylpyrrolidinium dicyanamide ionic liquid (IL) and the following molecular solvents: n-heptane, benzene, toluene, ethylbenzene, thiophene, 1-butanol, 1-hexanol, and 1-octanol. This is the very first time when experimental data on liquid-liquid equilibrium (LLE) phase diagrams and excess enthalpies of mixing (H(E)) for these systems are reported. An impact of the molecular solvent structure on LLE and H(E) is discussed. Furthermore, modeling of the properties under study is presented by using perturbed-chain statistical associating fluid theory (PC-SAFT). The equation of state is used in purely predictive and semipredictive mode. The latter one involves temperature-dependent binary corrections to combining rules employed in the PC-SAFT model determined on the basis of infinite dilution activity coefficients. The results shown indicate that such an approach can serve as an interesting modern thermodynamic tool for representation of thermodynamic data for complex ILs-based systems.


Journal of Chemical Information and Modeling | 2016

In Silico Calculation of Infinite Dilution Activity Coefficients of Molecular Solutes in Ionic Liquids: Critical Review of Current Methods and New Models Based on Three Machine Learning Algorithms

Kamil Paduszyński

The aim of the paper is to address all the disadvantages of currently available models for calculating infinite dilution activity coefficients (γ(∞)) of molecular solutes in ionic liquids (ILs)-a relevant property from the point of view of many applications of ILs, particularly in separations. Three new models are proposed, each of them based on distinct machine learning algorithm: stepwise multiple linear regression (SWMLR), feed-forward artificial neural network (FFANN), and least-squares support vector machine (LSSVM). The models were established based on the most comprehensive γ(∞) data bank reported so far (>34 000 data points for 188 ILs and 128 solutes). Following the paper published previously [J. Chem. Inf. Model 2014, 54, 1311-1324], the ILs were treated in terms of group contributions, whereas the Abraham solvation parameters were used to quantify an impact of solute structure. Temperature is also included in the input data of the models so that they can be utilized to obtain temperature-dependent data and thus related thermodynamic functions. Both internal and external validation techniques were applied to assess the statistical significance and explanatory power of the final correlations. A comparative study of the overall performance of the investigated SWMLR/FFANN/LSSVM approaches is presented in terms of root-mean-square error and average absolute relative deviation between calculated and experimental γ(∞), evaluated for different families of ILs and solutes, as well as between calculated and experimental infinite dilution selectivity for separation problems benzene from n-hexane and thiophene from n-heptane. LSSVM is shown to be a method with the lowest values of both training and generalization errors. It is finally demonstrated that the established models exhibit an improved accuracy compared to the state-of-the-art model, namely, temperature-dependent group contribution linear solvation energy relationship, published in 2011 [J. Chem. Eng. Data 2011, 56, 3598-3606].


Journal of Physical Chemistry B | 2017

Extraction of 2-Phenylethanol (PEA) from Aqueous Solution Using Ionic Liquids: Synthesis, Phase Equilibrium Investigation, Selectivity in Separation, and Thermodynamic Models

Urszula Domańska; Patrycja Okuniewska; Kamil Paduszyński; Marta Królikowska; Maciej Zawadzki; Mikołaj Więckowski

This study assessed the effect of ionic liquids (ILs) on extraction of 2-phenylethanol (PEA) from aqueous phase. It consists the synthesis of four new ILs, their physicochemical properties, and experimental solubility measurements in water as well as liquid-liquid phase equilibrium in ternary systems. ILs are an important new media for imaging and sensing applications because of their solvation property, thermal stability, and negligible vapor pressure. However, complex procedures and nonmiscibility with water are often required in PEA extraction. Herein, a facile and general strategy using four ILs as extraction media including the synthesis of new bis(fluorosulfonyl)imide-based ILs, 1-hexyl-methylmorpholinium bis(fluorosulfonyl)imide, [HMMOR][FSI], N-octylisoquinolinium bis(fluorosulfonyl)imide, [OiQuin][FSI], 1-butyl-1-methylpyrrolidinium bis(fluorosulfonyl)imide, [BMPYR][FSI], and N-triethyl-N-octylammonium bis(fluorosulfonyl)imide, [N2228][FSI], were investigated. The thermal properties, density, viscosity, and surface tension of new ILs were measured. Calorimetric measurements (DSC) were used to determine the melting point and the enthalpy of melting as well as the glass transition temperature and heat capacity at glass transition of the ILs. The phase equilibrium in binary systems (IL + PEA, or water) and in ternary systems {IL (1) + PEA (2) + water (3)} at temperature T = 308.15 K and ambient pressure are reported. All systems present liquid-liquid equilibrium with the upper critical solution temperature (UCST). All ILs revealed complete miscibility with PEA. In all ternary systems immiscibility gap was observed, which classified measured systems as Treybals type II. The two partially miscible binaries (IL + water) and (PEA + water) exist in these systems. The discussion contains the specific selectivity and the solute distribution ratio of separation for the used ILs. The commonly used NRTL model was used for the correlation of the experimental binary and ternary systems with acceptable root-mean-square deviation. The prediction of binary and ternary compositions was provided with acceptable deviations using COSMO RS. The data of ternary LLE show the possible use of [HMMOR][FSI] as a good entrainer for the separation of PEA from water using solvent extraction.

Collaboration


Dive into the Kamil Paduszyński's collaboration.

Top Co-Authors

Avatar

Urszula Domańska

University of KwaZulu-Natal

View shared research outputs
Top Co-Authors

Avatar

Marek Królikowski

Warsaw University of Technology

View shared research outputs
Top Co-Authors

Avatar

Marcin Okuniewski

Warsaw University of Technology

View shared research outputs
Top Co-Authors

Avatar

Marta Królikowska

Warsaw University of Technology

View shared research outputs
Top Co-Authors

Avatar

Maciej Zawadzki

Warsaw University of Technology

View shared research outputs
Top Co-Authors

Avatar

Elena Vadimovna Lukoshko

Warsaw University of Technology

View shared research outputs
Top Co-Authors

Avatar

Jerzy Antonowicz

Warsaw University of Technology

View shared research outputs
Top Co-Authors

Avatar

Patrycja Okuniewska

Warsaw University of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge