Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kamil Przyborowski is active.

Publication


Featured researches published by Kamil Przyborowski.


PLOS ONE | 2015

Effects of 1-Methylnicotinamide (MNA) on Exercise Capacity and Endothelial Response in Diabetic Mice

Kamil Przyborowski; Marta Wojewoda; Barbara Sitek; Agnieszka Zakrzewska; Agnieszka Kij; Krystyna Wandzel; Jerzy A. Zoladz; Stefan Chlopicki

1-Methylnicotinamide (MNA), which was initially considered to be a biologically inactive endogenous metabolite of nicotinamide, has emerged as an anti-thrombotic and anti-inflammatory agent with the capacity to release prostacyclin (PGI2). In the present study, we characterized the effects of MNA on exercise capacity and the endothelial response to exercise in diabetic mice. Eight-week-old db/db mice were untreated or treated with MNA for 4 weeks (100 mg·kg-1), and their exercise capacity as well as NO- and PGI2-dependent response to endurance running were subsequently assessed. MNA treatment of db/db mice resulted in four-fold and three-fold elevation of urine concentrations of MNA and its metabolites (Met-2PY + Met-4PY), respectively (P<0.01), but did not affect HbA1c concentration, fasting glucose concentration or lipid profile. However, insulin sensitivity was improved (P<0.01). In MNA-treated db/db mice, the time to fatigue for endurance exercise was significantly prolonged (P<0.05). Post-exercise Δ6-keto-PGF1α (difference between mean concentration in the sedentary and exercised groups) tended to increase, and post-exercise leukocytosis was substantially reduced in MNA-treated animals. In turn, the post-exercise fall in plasma concentration of nitrate was not affected by MNA. In conclusion, we demonstrated for the first time that MNA improves endurance exercise capacity in mice with diabetes, and may also decrease the cardiovascular risk of exercise.


Oncotarget | 2018

Dual antiplatelet therapy with clopidogrel and aspirin increases mortality in 4T1 metastatic breast cancer-bearing mice by inducing vascular mimicry in primary tumour

Marta Smeda; Anna Kieronska; Bartosz Proniewski; Agnieszka Jasztal; Anna Selmi; Krystyna Wandzel; Agnieszka Zakrzewska; Tomasz Wojcik; Kamil Przyborowski; Katarzyna Derszniak; Marta Stojak; Dawid Kaczor; Elzbieta Buczek; Cezary Watala; Joanna Wietrzyk; Stefan Chlopicki

Platelet inhibition has been considered an effective strategy for combating cancer metastasis and compromising disease malignancy although recent clinical data provided evidence that long-term platelet inhibition might increase incidence of cancer deaths in initially cancer-free patients. In the present study we demonstrated that dual anti-platelet therapy based on aspirin and clopidogrel (ASA+Cl), a routine regiment in cardiovascular patients, when given to cancer-bearing mice injected orthotopically with 4T1 breast cancer cells, promoted progression of the disease and reduced mice survival in association with induction of vascular mimicry (VM) in primary tumour. In contrast, treatment with ASA+Cl or platelet depletion did reduce pulmonary metastasis in mice, if 4T1 cells were injected intravenously. In conclusion, distinct platelet-dependent mechanisms inhibited by ASA+Cl treatment promoted cancer malignancy and VM in the presence of primary tumour and afforded protection against pulmonary metastasis in the absence of primary tumour. In view of our data, long-term inhibition of platelet function by dual anti-platelet therapy (ASA+Cl) might pose a hazard when applied to a patient with undiagnosed and untreated malignant cancer prone to undergo VM.


Platelets | 2016

Role of xanthine oxidoreductase in the anti-thrombotic effects of nitrite in rats in vivo

Karol Kramkowski; Agnieszka Leszczynska; Kamil Przyborowski; Tomasz Kaminski; U. Rykaczewska; Barbara Sitek; Agnieszka Zakrzewska; Bartosz Proniewski; Ryszard T. Smolenski; Ewa Chabielska; Wlodzimierz Buczko; Stefan Chlopicki

Abstract The mechanisms underlying nitrite-induced effects on thrombosis and hemostasis in vivo are not clear. The goal of the work described here was to investigate the role of xanthine oxidoreductase (XOR) in the anti-platelet and anti-thrombotic activities of nitrite in rats in vivo. Arterial thrombosis was induced electrically in rats with renovascular hypertension by partial ligation of the left renal artery. Sodium nitrite (NaNO2, 0.17 mmol/kg twice daily for 3 days, p.o) was administered with or without one of the XOR-inhibitors: allopurinol (ALLO) and febuxostat (FEB) (100 and 5 mg/kg, p.o., for 3 days). Nitrite treatment (0.17 mmol/kg), which was associated with a significant increase in NOHb, nitrite/nitrate plasma concentration, resulted in a substantial decrease in thrombus weight (TW) (0.48 ± 0.03 mg vs. vehicle [VEH] 0.88 ± 0.08 mg, p < 0.001) without a significant hypotensive effect. The anti-thrombotic effect of nitrite was partially reversed by FEB (TW = 0.63 ± 0.06 mg, p < 0.05 vs. nitrites), but not by ALLO (TW = 0.43 ± 0.02 mg). In turn, profound anti-platelet effect of nitrite measured ex vivo using collagen-induced whole-blood platelet aggregation (70.5 ± 7.1% vs. VEH 100 ± 4.5%, p < 0.05) and dynamic thromboxaneB2 generation was fully reversed by both XOR-inhibitors. In addition, nitrite decreased plasminogen activator inhibitor-1 concentration (0.47 ± 0.13 ng/ml vs. VEH 0.62 ± 0.04 ng/ml, p < 0.05) and FEB/ALLO reversed this effect. In vitro the anti-platelet effect of nitrite (1 mM) was reversed by FEB (0.1 mM) under hypoxia (0.5%O2) and normoxia (20%O2). Nitrite treatment had no effect on coagulation parameters. In conclusion, the nitrite-induced anti-platelet effect in rats in vivo is mediated by XOR, but XOR does not fully account for the anti-thrombotic effects of nitrite.


Journal of Pharmaceutical and Biomedical Analysis | 2016

Simultaneous quantification of PGI2 and TXA2 metabolites in plasma and urine in NO-deficient mice by a novel UHPLC/MS/MS method.

Agnieszka Kij; Lukasz Mateuszuk; Barbara Sitek; Kamil Przyborowski; Agnieszka Zakrzewska; Krystyna Wandzel; Maria Walczak; Stefan Chlopicki

The balance between vascular prostacyclin (PGI2) generated mainly via cyclooxygenase-2 (COX-2) and its physiological antagonist platelet-derived thromboxane A2 (TXA2) formed by cyclooxygenase-1 (COX-1) determines cardiovascular homeostasis. In the present work, a novel bioanalytical method for simultaneous quantification of stable plasma and urinary metabolites of PGI2 (6-keto-PGF1α, 2,3-dinor-6-keto-PGF1α) and TXA2 (TXB2, 2,3-dinor-TXB2) using ultra high-performance liquid chromatography coupled with tandem mass spectrometry (UHPLC/MS/MS) was developed. The method was validated using artificial plasma and urine and linearity range, intra- and inter-day precision and accuracy, recovery of analytes, relative and absolute matrix effect and stability of analytes were determined. The use of artificial biofluids improved the method sensitivity as it eliminated the contribution of endogenous metabolites present in mice plasma and urine to validation procedure. The newly developed and validated method allowed to quantify 6-keto-PGF1α and TXB2 in mice plasma as well as 2,3-dinor-6-keto-PGF1α and 2,3-dinor-TXB2 in urine samples with high sensitivity and accuracy. The calibration range was established from 0.1 to 100ng/mL for all analytes using artificial biofluids and the recoveries were greater than 89.9%. All validated parameters met the criteria of acceptance specified in FDA and EMA guidance. This method was successfully employed for profiling of the changes in PGI2 and TXA2 generation in NO-deficient mice. This work demonstrated that NO-deficiency induced by L-NAME, evidenced by a fall in nitrite in plasma and urine, was associated with platelet activation, robust increase in TXB2 and mild increase in 6-keto-PGF1α concentration in plasma. Changes in 2,3-dinor-6-keto-PGF1α and 2,3-dinor-TXB2 concentration in urine were less evident suggesting that the measurements in plasma better reflect modest changes in PGI2/TXA2 homeostasis than measurements in urine.


Journal of the American Heart Association | 2018

Vascular Cognitive Impairment Linked to Brain Endothelium Inflammation in Early Stages of Heart Failure in Mice

Mateusz G. Adamski; Magdalena Sternak; Tasnim Mohaissen; Dawid Kaczor; Joanna M. Wierońska; Monika Malinowska; Iwona Czaban; Katarzyna Byk; Kristina Sanne Lyngsø; Kamil Przyborowski; Pernille B. Lærkegaard Hansen; Grzegorz M. Wilczynski; Stefan Chlopicki

Background Although advanced heart failure (HF) is a clinically documented risk factor for vascular cognitive impairment, the occurrence and pathomechanisms of vascular cognitive impairment in early stages of HF are equivocal. Here, we characterize vascular cognitive impairment in the early stages of HF development and assess whether cerebral hypoperfusion or prothrombotic conditions are involved. Methods and Results Tgαq*44 mice with slowly developing isolated HF triggered by cardiomyocyte‐specific overexpression of G‐αq*44 protein were studied before the end‐stage HF, at the ages of 3, 6, and 10 months: before left ventricle dysfunction; at the stage of early left ventricle diastolic dysfunction (with preserved ejection fraction); and left ventricle diastolic/systolic dysfunction, respectively. In 6‐ to 10‐month‐old but not in 3‐month‐old Tgαq*44 mice, behavioral and cognitive impairment was identified with compromised blood‐brain barrier permeability, most significantly in brain cortex, that was associated with myelin sheet loss and changes in astrocytes and microglia. Brain endothelial cells displayed increased E‐selectin immunoreactivity, which was accompanied by increased amyloid‐β1‐42 accumulation in piriform cortex and increased cortical oxidative stress (8‐OHdG immunoreactivity). Resting cerebral blood flow measured by magnetic resonance imaging in vivo was preserved, but ex vivo NO‐dependent cortical arteriole flow regulation was impaired. Platelet hyperreactivity was present in 3‐ to 10‐month‐old Tgαq*44 mice, but it was not associated with increased platelet‐dependent thrombogenicity. Conclusions We report for the first time that vascular cognitive impairment is already present in the early stage of HF development, even before left ventricle systolic dysfunction. The underlying pathomechanism, independent of brain hypoperfusion, involves preceding platelet hyperreactivity and brain endothelium inflammatory activation.


Breast Cancer Research | 2018

Nitric oxide deficiency and endothelial–mesenchymal transition of pulmonary endothelium in the progression of 4T1 metastatic breast cancer in mice

Marta Smeda; Anna Kieronska; Mateusz G. Adamski; Bartosz Proniewski; Magdalena Sternak; Tasnim Mohaissen; Kamil Przyborowski; Katarzyna Derszniak; Dawid Kaczor; Marta Stojak; Elzbieta Buczek; Agnieszka Jasztal; Joanna Wietrzyk; Stefan Chlopicki

BackgroundMesenchymal transformation of pulmonary endothelial cells contributes to the formation of a metastatic microenvironment, but it is not known whether this precedes or follows early metastasis formation. In the present work, we characterize the development of nitric oxide (NO) deficiency and markers of endothelial–mesenchymal transition (EndMT) in the lung in relation to the progression of 4T1 metastatic breast cancer injected orthotopically in mice.MethodsNO production, endothelial nitric oxide synthase (eNOS) phosphorylation status, markers of EndMT in the lung, pulmonary endothelium permeability, and platelet activation/reactivity were analyzed in relation to the progression of 4T1 breast cancer metastasis to the lung, as well as to lung tissue remodeling, 1–5 weeks after 4T1 cancer cell inoculation in Balb/c mice.ResultsPhosphorylation of eNOS and NO production in the lungs of 4T1 breast cancer-bearing mice was compromised prior to the development of pulmonary metastasis, and was associated with overexpression of Snail transcription factor in the pulmonary endothelium. These changes developed prior to the mesenchymal phenotypic switch in the lungs evidenced by a decrease in vascular endothelial-cadherin (VE-CAD) and CD31 expression, and the increase in pulmonary endothelial permeability, phenomena which coincided with early pulmonary metastasis. Increased activation of platelets was also detected prior to the early phase of metastasis and persisted to the late phase of metastasis, as evidenced by the higher percentage of unstimulated platelets binding fibrinogen without changes in von Willebrand factor and fibrinogen binding in response to ADP stimulation.ConclusionsDecreased eNOS activity and phosphorylation resulting in a low NO production state featuring pulmonary endothelial dysfunction was an early event in breast cancer pulmonary metastasis, preceding the onset of its phenotypic switch toward a mesenchymal phenotype (EndMT) evidenced by a decrease in VE-CAD and CD31 expression. The latter coincided with development of the first metastatic nodules in the lungs. These findings suggest that early endothelial dysfunction featured by NO deficiency rather than EndMT, might represent a primary regulatory target to prevent early pulmonary metastasis.


Platelets | 2017

Effects of a single bout of strenuous exercise on platelet activation in female ApoE/LDLR−/− mice

Kamil Przyborowski; Hassan Kassassir; Marta Wojewoda; K. Kmiecik; Barbara Sitek; Karolina Siewiera; Agnieszka Zakrzewska; A. M. Rudolf; Renata B. Kostogrys; Cezary Watala; Jerzy A. Zoladz; Stefan Chlopicki

Abstract Strenuous physical exercise leads to platelet activation that is normally counterbalanced by the production of endothelium-derived anti-platelet mediators, including prostacyclin (PGI2) and nitric oxide (NO). However, in the case of endothelial dysfunction, e.g. in atherosclerosis, there exists an increased risk for intravascular thrombosis during exercise that might be due to an impairment in endothelial anti-platelet mechanisms. In the present work, we evaluated platelet activation at rest and following a single bout of strenuous treadmill exercise in female ApoE/LDLR−/− mice with early (3-month-old) and advanced (7-month-old) atherosclerosis compared to female age-matched WT mice. In sedentary and post-exercise groups of animals, we analyzed TXB2 generation and the expression of platelet activation markers in the whole blood ex vivo assay. We also measured pre- and post-exercise plasma concentration of 6-keto-PGF1α, nitrite/nitrate, lipid profile, and blood cell count. Sedentary 3- and 7-month-old ApoE/LDLR−/− mice displayed significantly higher activation of platelets compared to age-matched wild-type (WT) mice, as evidenced by increased TXB2 production, expression of P-selectin, and activation of GPIIb/IIIa receptors, as well as increased fibrinogen and von Willebrand factor (vWf) binding. Interestingly, in ApoE/LDLR−/− but not in WT mice, strenuous exercise partially inhibited TXB2 production, the expression of activated GPIIb/IIIa receptors, and fibrinogen binding, with no effect on the P-selectin expression and vWf binding. Post-exercise down-regulation of the activated GPIIb/IIIa receptor expression and fibrinogen binding was not significantly different between 3- and 7-month-old ApoE/LDLR−/− mice; however, only 7-month-old ApoE/LDLR−/− mice showed lower TXB2 production after exercise. In female 4–6-month-old ApoE/LDLR−/− but not in WT mice, an elevated pre- and post-exercise plasma concentration of 6-keto-PGF1α was observed. In turn, the pre- and post-exercise plasma concentrations of nitrite (NO2−) and nitrate (NO3−) were decreased in ApoE/LDLR−/− as compared to that in age-matched WT mice. In conclusion, we demonstrated overactivation of platelets in ApoE/LDLR−/− as compared to WT mice. However, platelet activation in ApoE/LDLR−/− mice was not further increased by strenuous exercise, but was instead attenuated, a phenomenon not observed in WT mice. This phenomenon could be linked to compensatory up-regulation of PGI2-dependent anti-platelet mechanisms in ApoE/LDLR−/− mice.


Pharmacological Reports | 2013

Different effects of nitrate and nitrite on hemostasis in rats

Karol Kramkowski; Agnieszka Leszczynska; Kamil Przyborowski; Wlodzimierz Buczko; Stefan Chlopicki


Medicine and Science in Sports and Exercise | 2018

Vascular Nitric Oxide–Superoxide Balance and Thrombus Formation after Acute Exercise

Kamil Przyborowski; Bartosz Proniewski; Joanna Czarny; Marta Smeda; Barbara Sitek; Agnieszka Zakrzewska; Jerzy A. Zoladz; Stefan Chlopicki


Naunyn-schmiedebergs Archives of Pharmacology | 2017

Short-term treatment with nitrate is not sufficient to induce in vivo antithrombotic effects in rats and mice

Karol Kramkowski; Agnieszka Leszczynska; Kamil Przyborowski; Bartosz Proniewski; N. Marcinczyk; U. Rykaczewska; D. Jarmoc; Ewa Chabielska; Stefan Chlopicki

Collaboration


Dive into the Kamil Przyborowski's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Karol Kramkowski

Medical University of Białystok

View shared research outputs
Top Co-Authors

Avatar

Agnieszka Leszczynska

Medical University of Białystok

View shared research outputs
Top Co-Authors

Avatar

Jerzy A. Zoladz

Jagiellonian University Medical College

View shared research outputs
Top Co-Authors

Avatar

Wlodzimierz Buczko

Medical University of Białystok

View shared research outputs
Top Co-Authors

Avatar

Dawid Kaczor

Jagiellonian University

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge