Kamila Hlavčová
Slovak University of Technology in Bratislava
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Kamila Hlavčová.
Hydrological Sciences Journal-journal Des Sciences Hydrologiques | 2009
Juraj Parajka; Silvia Kohnová; Ralf Merz; Ján Szolgay; Kamila Hlavčová; Günter Blöschl
Abstract The main objective of this study is to compare the seasonality of selected precipitation and runoff characteristics in Austria and Slovakia. Monthly seasonality indices are analysed to interpret the long-term climatic behaviour, while the seasonality of extremes is analysed to understand flood occurrence. The analysis is based on mean monthly precipitation data at 555 (Austria) and 202 (Slovakia) stations, annual maximum daily precipitation at 520 (Austria) and 56 (Slovakia) stations, and mean monthly runoff and annual maximum floods at 258 (Austria) and 85 (Slovakia) gauging stations. The results suggest that the seasonality of the selected hydrological characteristics is an important indicator of flood processes, but varies considerably in space. The seasonality of extreme flood events and, hence flood processes, tends to change with the flood magnitude. This change is more pronounced in the lowland and hilly regions than it is in the mountains. Both in Austria and Slovakia, decades of flood seasonality exist.
Hydrological Sciences Journal-journal Des Sciences Hydrologiques | 2015
Ladislav Gaál; Ján Szolgay; Silvia Kohnová; Kamila Hlavčová; Juraj Parajka; Alberto Viglione; Ralf Merz; Günter Blöschl
Abstract The aim of this paper is to understand the causal factors controlling the relationship between flood peaks and volumes in a regional context. A case study is performed based on 330 catchments in Austria ranging from 6 to 500 km2 in size. Maximum annual flood discharges are compared with the associated flood volumes, and the consistency of the peak–volume relationship is quantified by the Spearman rank correlation coefficient. The results indicate that climate-related factors are more important than catchment-related factors in controlling the consistency. Spearman rank correlation coefficients typically range from about 0.2 in the high alpine catchments to about 0.8 in the lowlands. The weak dependence in the high alpine catchments is due to the mix of flood types, including long-duration snowmelt, synoptic floods and flash floods. In the lowlands, the flood durations vary less in a given catchment which is related to the filtering of the distribution of all storms by the catchment response time to produce the distribution of flood producing storms. Editor Z.W. Kundzewicz
Contributions To Geophysics and Geodesy | 2010
Ladislav Gaál; Ján Szolgay; Silvia Kohnová; Kamila Hlavčová; Alberto Viglione
Inclusion of historical information in flood frequency analysis using a Bayesian MCMC technique: a case study for the power dam Orlík, Czech Republic The paper deals with at-site flood frequency estimation in the case when also information on hydrological events from the past with extraordinary magnitude are available. For the joint frequency analysis of systematic observations and historical data, respectively, the Bayesian framework is chosen, which, through adequately defined likelihood functions, allows for incorporation of different sources of hydrological information, e.g., maximum annual flood peaks, historical events as well as measurement errors. The distribution of the parameters of the fitted distribution function and the confidence intervals of the flood quantiles are derived by means of the Markov chain Monte Carlo simulation (MCMC) technique. The paper presents a sensitivity analysis related to the choice of the most influential parameters of the statistical model, which are the length of the historical period h and the perception threshold X0. These are involved in the statistical model under the assumption that except for the events termed as ‘historical’ ones, none of the (unknown) peak discharges from the historical period h should have exceeded the threshold X0. Both higher values of h and lower values of X0 lead to narrower confidence intervals of the estimated flood quantiles; however, it is emphasized that one should be prudent of selecting those parameters, in order to avoid making inferences with wrong assumptions on the unknown hydrological events having occurred in the past. The Bayesian MCMC methodology is presented on the example of the maximum discharges observed during the warm half year at the station Vltava-Kamýk (Czech Republic) in the period 1877-2002. Although the 2002 flood peak, which is related to the vast flooding that affected a large part of Central Europe at that time, occurred in the near past, in the analysis it is treated virtually as a ‘historical’ event in order to illustrate some crucial aspects of including information on extreme historical floods into at-site flood frequency analyses.
Journal of Hydrology and Hydromechanics | 2016
Ján Szolgay; Ladislav Gaál; Tomáš Bacigál; Silvia Kohnová; Kamila Hlavčová; Roman Výleta; Juraj Parajka; Günter Blöschl
Abstract This paper analyses the bivariate relationship between flood peaks and corresponding flood event volumes modelled by empirical and theoretical copulas in a regional context, with a focus on flood generation processes in general, the regional differentiation of these and the effect of the sample size on reliable discrimination among models. A total of 72 catchments in North-West of Austria are analysed for the period 1976–2007. From the hourly runoff data set, 25 697 flood events were isolated and assigned to one of three flood process types: synoptic floods (including long- and short-rain floods), flash floods or snowmelt floods (both rain-on-snow and snowmelt floods). The first step of the analysis examines whether the empirical peak-volume copulas of different flood process types are regionally statistically distinguishable, separately for each catchment and the role of the sample size on the strength of the statements. The results indicate that the empirical copulas of flash floods tend to be different from those of the synoptic and snowmelt floods. The second step examines how similar are the empirical flood peak-volume copulas between catchments for a given flood type across the region. Empirical copulas of synoptic floods are the least similar between the catchments, however with the decrease of the sample size the difference between the performances of the process types becomes small. The third step examines the goodness-of-fit of different commonly used copula types to the data samples that represent the annual maxima of flood peaks and the respective volumes both regardless of flood generating processes (the traditional engineering approach) and also considering the three process-based classes. Extreme value copulas (Galambos, Gumbel and Hüsler-Reiss) show the best performance both for synoptic and flash floods, while the Frank copula shows the best performance for snowmelt floods. It is concluded that there is merit in treating flood types separately when analysing and estimating flood peak-volume dependence copulas; however, even the enlarged dataset gained by the process-based analysis in this study does not give sufficient information for a reliable model choice for multivariate statistical analysis of flood peaks and volumes.
Contributions To Geophysics and Geodesy | 2015
Kamila Hlavčová; Milan Lapin; Peter Valent; Ján Szolgay; Silvia Kohnová; Peter Rončák
Abstract In order to estimate possible changes in the flood regime in the mountainous regions of Slovakia, a simple physically-based concept for climate change-induced changes in extreme 5-day precipitation totals is proposed in the paper. It utilizes regionally downscaled scenarios of the long-term monthly means of the air temperature, specific air humidity and precipitation projected for Central Slovakia by two regional (RCM) and two global circulation models (GCM). A simplified physically-based model for the calculation of short-term precipitation totals over the course of changing air temperatures, which is used to drive a conceptual rainfall-runoff model, was proposed. In the paper a case study of this approach in the upper Hron river basin in Central Slovakia is presented. From the 1981–2010 period, 20 events of the basin’s most extreme average of 5-day precipitation totals were selected. Only events with continual precipitation during 5 days were considered. These 5-day precipitation totals were modified according to the RCM and GCM-based scenarios for the future time horizons of 2025, 2050 and 2075. For modelling runoff under changed 5-day precipitation totals, a conceptual rainfall-runoff model developed at the Slovak University of Technology was used. Changes in extreme mean daily discharges due to climate change were compared with the original flood events and discussed.
Archive | 2006
Kamila Hlavčová; Ján Szolgay; Richard Kubes; Silvia Kohnová; Marcel Zvolenský
The applicability of medium range quantitative precipitation forecasts is explored in a flood forecasting system for a medium-size mountainous basin. The results were obtained within the project of the 5 th Framework Programme of the European Commission called “European Flood Forecasting System” (EFFS). As a pilot region for the Slovak part of the project, the upper Hron River basin with a drainage area of 1,766 km 2 was chosen. The basin is located in Central Slovakia and was considered to be representative for mountainous regions where flood generation from cyclonic rainfall and snowmelt processes plays an important role. Meteorological forecasts provided by the European Centre for Medium Range Weather Forecast (ECMWF deterministic model and ensemble forecasts), the Danish Meteorological Institute (DMI – HIRLAM model), the German Weather Service (DWD LM and GME models), and the ALADIN model were used to drive a hydrological model. A conceptual semi-distributed rainfall-runoff model developed at the Slovak University of Technology in Bratislava was used for modelling runoff. The model was calibrated and verified using data from the period of 1991-2000. Hindcasted flows for the floods, which occurred in the upper Hron river basin in July 1 To whom correspondence should be addressed. Kamila Hlavcova, Dept. of Land and Water Resources Management, Slovak University of Technology, Radlinskeho 11, 813 68 Bratislava, Slovakia; e-mail: [email protected] ______ 8
Advances in Meteorology | 2014
Ladislav Gaál; Romana Beranová; Kamila Hlavčová; Jan Kyselý
The study examines projected changes in precipitation extremes, aggregated on several time scales (1 hour, 1 day, and 5 days), in simulations of 12 regional climate models (RCMs) with high spatial resolution (~25 km). The study area is the Carpathian Basin (Central and Southeastern Europe) which has a complex topography and encompasses the whole territory of Slovakia and Hungary as well as major parts of Romania and western Ukraine. We focus on changes in mean seasonal maxima and high quantiles (50-year return values) projected for the late 21st century (time slice 2070–2099) in comparison to the control period (time slice 1961–1990), for summer and winter. The 50-year return values are estimated by means of a regional frequency analysis based on the region-of-influence method, which reduces random variability and leads to more reliable estimates of high quantiles. In winter, all examined characteristics of precipitation (seasonal totals, mean seasonal maxima, and 50-year return values for both short-term and multi-day aggregations) show similar patterns of projected increases for the late 21st century. In summer, by contrast, drying is projected for seasonal totals in all RCMs while increases clearly prevail for the 50-year return values. The projected increases are larger for short-term (hourly) extremes that are more directly related to convective activity than multiday extremes. This suggests that the probability of occurrence of flash floods may increase more than that of large-scale floods in a warmer climate. The within-ensemble variability (and associated uncertainty) is, nevertheless, much larger in summer than in winter.
Journal of Hydrology and Hydromechanics | 2010
Márta Bara; Ladislav Gaál; Silvia Kohnová; Ján Szolgay; Kamila Hlavčová
On the use of the simple scaling of heavy rainfall in a regional estimation of IDF curves in Slovakia The aim of this study was to test the applicability of a simple scaling methodology for a regional estimation of intensity-duration-frequency (IDF) curves in Slovakia. The analysis is based on the regionalization process of Gaál (2006), which focused on the delineation of homogeneous regions for a regional frequency analysis of precipitation maxima. In order to examine the regionally estimated IDF curves, a region covering the western parts of Slovakia was chosen. The selected region, which encompasses 19 raingauging stations, may be characterized by the dominant influence of Atlantic circulation patterns. Three of the 19 stations belonging to the target region were set aside and flagged as verification stations. The regional dimensionless growth curve of 1-day precipitation maxima in the warm season was derived for the region, and the local T-year quantiles were estimated by the index value method for the stations. At the same time, a regionally averaged scaling exponent was derived using all the stations except for the three verification ones. The local IDF curves at the verification stations were estimated by downscaling the T-year quantiles of the 1-day precipitation maxima using the regionally averaged scaling exponent. Finally, the IDF curves for these stations were compared with those defined by Šamaj, Valovič (1973). This study is the first step in assessing the applicability of a simple scaling theory for the regional estimation of IDF curves in Slovakia. Využitie metódy jednoduchého škálovania extrémnych zrážok pri regionálnom odhade návrhových dažďov na Slovensku Cieľom tejto práce bolo otestovať možnosť použitia metódy jednoduchého škálovania zrážok pri regionálnom odhade návrhových hodnôt zrážkových intenzít na Slovensku. Pre analýzu bolo vybraných 19 zrážkomerných staníc vo vopred vyčlenenom regióne na území západného Slovenska, pričom tri stanice boli separované ako verifikačné stanice. Pre vybraný región sme odvodili bezrozmernú regionálnu čiaru prekročenia jednodenných maximálnych úhrnov zrážok v teplom polroku a následne sme pre verifikačné stanice metódou indexovej hodnoty odhadli lokálne návrhové hodnoty pre rôzne významné doby opakovania T (tzv. T-ročné kvantily). Vo vyčlenenom regióne sme určili priemerný regionálny škálovací koeficient. Návrhové zrážkové intenzity pre tri verifikačné stanice sa stanovili zoškálovaním T-ročných kvantilov jednodenných maximálnych zrážok pomocou regionálneho škálovacieho koeficientu. Určené návrhové hodnoty sme porovnali s výsledkami Šamaja, Valoviča (1973). Štúdia potvrdila možnosť využitia metódy jednoduchého škálovania na regionálny odhad návrhových hodnôt zrážkových intenzít na Slovensku.
Biologia | 2009
Kamila Hlavčová; Ján Szolgay; Silvia Kohnová; Oliver Horvat
A distributed hydrological model was applied for estimating changes in a runoff regime due to land use changes. The upper Hron river basin, which has an area of 1766 km2 and is located in central Slovakia, was selected as the pilot basin. A physically-based rainfall-runoff model with distributed parameters was used for modelling runoff from rainfall and melting snow. The parameters of the model were estimated using climate data from 1981–2000 and from three digital map layers: a land-use map, soil map and digital elevation model. Several scenarios of changes in land use were prepared, and the runoff under the new land use conditions was simulated. Long-term mean annual runoff components and the design maximal mean daily discharges with a return period from 5 to 100 years under the previous and changed land uses were estimated and compared. The simulated runoff changes were confronted with expert judgments and estimates from the literature. Limitations of the use of distributed models for estimating land use changes are discussed.
Journal of Hydrology and Hydromechanics | 2016
Kamila Hlavčová; Silvia Kohnová; Marco Borga; Oliver Horvat; Pavel Šťastný; Pavla Pekárková; Oľga Majerčáková; Zuzama Danáčová
Abstract This work examines the main features of the flash flood regime in Central Europe as revealed by an analysis of flash floods that have occurred in Slovakia. The work is organized into the following two parts: The first part focuses on estimating the rainfall-runoff relationships for 3 major flash flood events, which were among the most severe events since 1998 and caused a loss of lives and a large amount of damage. The selected flash floods occurred on the 20th of July, 1998, in the Malá Svinka and Dubovický Creek basins; the 24th of July, 2001, at Štrbský Creek; and the 19th of June, 2004, at Turniansky Creek. The analysis aims to assess the flash flood peaks and rainfall-runoff properties by combining post-flood surveys and the application of hydrological and hydraulic post-event analyses. Next, a spatially-distributed hydrological model based on the availability of the raster information of the landscape’s topography, soil and vegetation properties, and rainfall data was used to simulate the runoff. The results from the application of the distributed hydrological model were used to analyse the consistency of the surveyed peak discharges with respect to the estimated rainfall properties and drainage basins. In the second part these data were combined with observations from flash flood events which were observed during the last 100 years and are focused on an analysis of the relationship between the flood peaks and the catchment area. The envelope curve was shown to exhibit a more pronounced decrease with the catchment size with respect to other flash flood relationships found in the Mediterranean region. The differences between the two relationships mainly reflect changes in the coverage of the storm sizes and hydrological characteristics between the two regions.