Kamila Żelechowska
Gdańsk University of Technology
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Kamila Żelechowska.
Bioelectrochemistry | 2012
Krzysztof Stolarczyk; Małgorzata Sepelowska; Dominika Lyp; Kamila Żelechowska; Jan F. Biernat; Jerzy Rogalski; Kevin D. Farmer; Ken N. Roberts; Renata Bilewicz
Single-walled carbon nanotubes (SWCNT) were covalently modified with anthracene and anthraquinone and used for the construction of cathodes for biocatalytic reduction of dioxygen. The nanotubes with aromatic groups casted onto the electrode increased the working surface of the electrode and enabled efficient direct electron transfer (DET) between the enzyme and the electrode. The aryl groups enter the hydrophobic pocket of the T1 center of laccase responsible for exchanging electrons with the substrate. Glassy carbon electrode covered with arylated SWCNT and coated with a layer of neutralized Nafion containing laccase was found to be a very efficient cathode in the hybrid battery. Zn wire covered with a Nafion film served as the anode. The cell parameters were determined: power density was 2 mW/cm(2) and the open circuit potential was 1.5 V.
Polish Journal of Chemical Technology | 2016
Kamila Żelechowska; Izabela Kondratowicz; Maria Gazda
Abstract Synthesis and characterization of the graphene hydrogels with three different metallic nanoparticles, that is Au, Ag and Cu, respectively is presented. Synthesized in a one-pot approach graphene hydrogels with embedded metallic nanoparticles were tested as heterogeneous catalysts in a model reaction of 4-nitrophenol reduction. The highest activity was obtained for graphene hydrogel with Cu nanoparticles and additional reaction of methylene blued degradation was evaluated using this system. The obtained outstanding catalytic activity arises from the synergistic effect of graphene and metallic nanoparticles. The hydrogel form of the catalyst benefits in the easiness in separation from the reaction mixture (for example using tweezers) and reusability.
Materials Science-poland | 2015
Izabela Kondratowicz; Kamila Żelechowska; Dominika Majdecka; Renata Bilewicz
Abstract We have carried out the preparation of reduced graphene oxide aerogels using eco-friendly method that is based on the Hummers method of graphite oxidation without the use of NaNO3 that produces toxic gases. To obtain a porous 3D structure of reduced graphene oxide, we performed the hydrothermal reduction at elevated temperature. We also prepared the rGO aerogel/CNT composite using multiwalled carbon nanotubes as linkers. The rGO aerogels are promising materials as they possess good electrical conductivity (up to 100 S/m) and high surface area and porous structure (~500 m2/g). The main goal was to obtain the material for electrodes in enzymatic biofuel cells. Thus, the proper modification was performed using free radical functionalization. It was shown that in order to synthesize rGO aerogels modified with anthracene, the proper order of reactions needs to be provided. The morphology of anthracene modified electrodes was analyzed using scanning electron microscopy, which confirmed their porous structure with non-uniform pore size distribution that ranged between few nanometers to microns. Data obtained by Raman spectroscopy confirmed the successful oxidation and reduction of analyzed materials. UV-Vis spectra revealed the presence of anthracene moieties in examined materials. We also recorded preliminary cyclic voltammograms that confirm an electric conductivity of the obtained structures.
Beilstein Journal of Nanotechnology | 2017
Kamila Żelechowska; Marta Prześniak-Welenc; Marcin Łapiński; Izabela Kondratowicz; T. Miruszewski
Graphene oxide was functionalized with simultaneous reduction to produce phosphonated reduced graphene oxide in a novel, fully scalable, one-pot method. The phosphonic derivative of graphene was obtained through the reaction of graphene oxide with phosphorus trichloride in water. The newly synthesized reduced graphene oxide derivative was fully characterized by using spectroscopic methods along with thermal analysis. The morphology of the samples was examined by electron microscopy. The electrical studies revealed that the functionalized graphene derivative behaves in a way similar to chemically or thermally reduced graphene oxide, with an activation energy of 0.014 eV.
Bioconjugate Chemistry | 2016
Kamila Żelechowska; Joanna Karczewska-Golec; Jakub Karczewski; Marcin Łoś; Andrzej M. Kłonkowski; Grzegorz Węgrzyn; Piotr Golec
Biological systems, especially bacteriophages and peptides, are an attractive green alternative to other known methods of nanoparticle synthesis. In this work, for the first time, bacteriophages were employed to synthesize a specific peptide, capable of producing nanoparticles (NPs). Derivatives of M13 bacteriophage exposing a ZnO-binding peptide (TMGANLGLKWPV) on either pIII or pVIII phage coat protein were constructed and used as a biotemplate. The exposition of the ZnO-binding peptide, synthesized by phages during their propagation in bacteria, on M13 virions provided a groundwork for growing ZnO nanostructures. Depending on the recombinant phage type used (M13-pIII-ZnO or M13-pVIII-ZnO), well separated ZnO NPs or complex 3D structures of ZnO NPs of ca. 20-40 nm were synthesized at room temperature. The synthesized ZnO nanoparticles served as a luminescent material that emitted light near the short wavelength end of the visible region (at ca. 400 nm). The next very low intensity emission band at 530 nm demonstrated that the ZnO material obtained is characterized by a low concentration of surface defects.
Archive | 2015
Izabela Kondratowicz; Kamila Żelechowska; Wojciech Sadowski
In this article, we present the review of the chemical methods of synthesis of graphene oxide and its reduction in order to obtain the so-called reduced graphene oxide (rGO) whose properties are similar to those of pure graphene. We also present our experiments and the results in this field and the comparison of the efficiency of different methods of synthesis as well as the reduction of graphene oxide. To characterize the obtained materials, we used UV–Vis spectroscopy, FTIR and Raman spectroscopy, and scanning electron microscopy (SEM). As a conclusion, we propose three methods of GO synthesis that allow to obtain the most oxidized materials. For the reduction methods, we suggest the use of hydrazine, the most effective reducing agent. Among many methods of graphene synthesis, chemical methods remain the simplest and cost-effective. The rGO as a derivative of pure graphene possesses good electrical properties and thus can be applied in many fields such as electronics, photonics, and medicine.
Journal of Nanoparticle Research | 2018
Dorota Matyszewska; Ewelina Napora; Kamila Żelechowska; Jan F. Biernat; Renata Bilewicz
AbstractThe synthesis, characterization, and the influence of single-walled carbon nanotubes (SWCNTs) modified with an anticancer drug doxorubicin (DOx) on the properties of model biological membrane as well as the comparison of the two modes of modification has been presented. The drug was covalently attached to the nanotubes either preferentially on the sides or at the ends of the nanotubes by the formation of hydrazone bond. The efficiency of the modification was proved by the results of FTIR, Raman, and thermogravimetric analysis. In order to characterize the influence of SWCNT-DOx conjugates on model biological membranes, Langmuir technique has been employed. The mixed monolayers composed of 1,2-dipalmitoyl-sn-glycero-3-phosphothioethanol (DPPTE) and SWCNT-DOx with different weight ratio have been prepared. It has been shown that changes in the isotherm characteristics depend on the SWCNTs content. While smaller amounts of SWCNTs do not exert significant differences, the introduction of the prevailing content of the nanotubes increases area per molecule and decreases the maximum value of compression modulus, leading to more fluid monolayer. However, upon increasing the surface pressure, the aggregation of carbon nanotubes within the thiolipid matrix has been observed. Mixed layers of DPPTE/SWCNT-DOx were also transferred onto gold electrodes by means of LB method. Cyclic voltammetry showed that SWCNT-DOx conjugates remain adsorbed at the electrode surface and are stable in time. Additionally, higher values of peak current and DOx surface concentration obtained for side modification prove that side modification allows for more efficient conjugation of the drug to carbon nanotubes. Graphical abstractᅟ
Fullerenes Nanotubes and Carbon Nanostructures | 2018
Kamila Żelechowska; Diana Sobota; Bartłomiej Cieślik; Marta Prześniak-Welenc; Marcin Łapiński; Jan F. Biernat
ABSTRACT Effective, one-pot method of CNTs phosphonylation is presented. Cheap and readily available reagents are used, so the process can be easily transferred to large-scale production. The product was analyzed using spectroscopic methods (FTIR, UV-vis, XPS). Thermal properties of the bis-phosphonated nanotubes are reported for the first time. Newly obtained material was tested as an adsorbent for mercury removal from water. The sorption capacity for newly developed adsorbent was as high as 223.7 mg/g. The adsorption kinetics were studied within framework of Lagergren model, and Langmuir and Freundlich isotherms have been described. The effect of pH on the adsorption process has been evaluated and the optimal environmental conditions were determined to be neutral. The presence of bivalent ions Cd2+, Ni2+ in the solution did not affect adsorption efficiency of novel materials.
Electrochemistry Communications | 2012
Maciej Karaśkiewicz; Ewa Nazaruk; Kamila Żelechowska; Jan F. Biernat; Jerzy Rogalski; Renata Bilewicz
Electrochimica Acta | 2012
Krzysztof Stolarczyk; Dominika Łyp; Kamila Żelechowska; Jan F. Biernat; Jerzy Rogalski; Renata Bilewicz