Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kamilla Schlade-Bartusiak is active.

Publication


Featured researches published by Kamilla Schlade-Bartusiak.


Brain | 2013

Mutations in B4GALNT1 (GM2 synthase) underlie a new disorder of ganglioside biosynthesis

Gaurav V. Harlalka; Anna Lehman; Barry A. Chioza; Emma L. Baple; Reza Maroofian; Harold E. Cross; Ajith Sreekantan-Nair; David A. Priestman; Saeed Al-Turki; Meriel McEntagart; Christos Proukakis; Louise Royle; Radoslaw P. Kozak; Laila Bastaki; Michael A. Patton; K. Wagner; Roselyn Coblentz; Joy Price; Michelle M. Mezei; Kamilla Schlade-Bartusiak; Frances M. Platt; Andrew H. Crosby

Glycosphingolipids are ubiquitous constituents of eukaryotic plasma membranes, and their sialylated derivatives, gangliosides, are the major class of glycoconjugates expressed by neurons. Deficiencies in their catabolic pathways give rise to a large and well-studied group of inherited disorders, the lysosomal storage diseases. Although many glycosphingolipid catabolic defects have been defined, only one proven inherited disease arising from a defect in ganglioside biosynthesis is known. This disease, because of defects in the first step of ganglioside biosynthesis (GM3 synthase), results in a severe epileptic disorder found at high frequency amongst the Old Order Amish. Here we investigated an unusual neurodegenerative phenotype, most commonly classified as a complex form of hereditary spastic paraplegia, present in families from Kuwait, Italy and the Old Order Amish. Our genetic studies identified mutations in B4GALNT1 (GM2 synthase), encoding the enzyme that catalyzes the second step in complex ganglioside biosynthesis, as the cause of this neurodegenerative phenotype. Biochemical profiling of glycosphingolipid biosynthesis confirmed a lack of GM2 in affected subjects in association with a predictable increase in levels of its precursor, GM3, a finding that will greatly facilitate diagnosis of this condition. With the description of two neurological human diseases involving defects in two sequentially acting enzymes in ganglioside biosynthesis, there is the real possibility that a previously unidentified family of ganglioside deficiency diseases exist. The study of patients and animal models of these disorders will pave the way for a greater understanding of the role gangliosides play in neuronal structure and function and provide insights into the development of effective treatment therapies.


American Journal of Medical Genetics Part A | 2005

FISH-mapping of telomeric 14q32 deletions: search for the cause of seizures.

Kamilla Schlade-Bartusiak; Teresa Costa; Anne Summers; Małgorzata J.M. Nowaczyk; Diane W. Cox

Ring chromosome 14 is a rare cytogenetic disorder. Individuals with r(14) generally have developmental delay and seizures. Other features include hypotonia, microcephaly, mild facial dysmorphism, and retinal pigmentation. Most of these features are also found in patients with linear terminal deletions of chromosome 14, except for seizures and retinal abnormalities. The objective of the study was to determine if deletion of a specific chromosome region is a possible explanation for the occurrence of seizures in patients with ring chromosome 14. Patients diagnosed either with r(14) (six patients) or a deletion of distal 14q (three patients) were analyzed by FISH (fluorescence in situ hybridization) with BAC probes. We observed differences in the size of deletions in the studied group. In two r(14) patients, we did not detect any deletion; the four other patients had deletions of various sizes, ranging from 0.8 Mb to 5 Mb. Two linear deletions were 3.2 Mb and 5.3 Mb in length, respectively; the third case had an interstitial deletion that did not overlap with the others. The deleted regions in ring chromosomes showed overlap with those in the two linear terminal deletions. We conclude that there is unlikely to be a specific deleted locus in 14q32.3 that predisposes r(14) patients to seizures or retinal pigmentation. The cause is probably related to the formation of the ring itself and the effect this may have on local chromatin structure.


Genetics in Medicine | 2012

Uniparental disomy: can SNP array data be used for diagnosis?

Tracy Tucker; Kamilla Schlade-Bartusiak; Patrice Eydoux; Tanya N. Nelson; Lindsay Brown

Purpose:Single-nucleotide polymorphism microarray analysis identifies copy-number variants and blocks of homozygosity, suggestive of consanguinity or uniparental disomy. The purpose of this study was to validate chromosomal microarray analysis for the identification of uniparental disomy in a clinical laboratory.Methods:In phase I of this retrospective study, nine cases with uniparental disomy for chromosomes 7 (n = 1), 14 (n = 1), and 15 (n = 7), identified by conventional polymorphic microsatellite marker analysis were analyzed on the Affymetrix 6.0 single-nucleotide polymorphism array. In phase II, four cases of uniparental disomy 15 showing heterozygosity for all microsatellite markers were analyzed using the same array.Results:Chromosomal microarray analysis detected blocks of homozygosity in eight of the nine cases in phase I. Phase II analysis of molecularly defined heterodisomy failed to detect blocks of homozygosity in three of the four cases. The four cases in which microarray did not detect blocks of homozygosity all involved chromosome 15.Conclusion:A failure to recombine may predispose to nondisjunction and, therefore, to uniparental disomy. Four cases of heterodisomy 15 were not detected by array, suggesting a lack of recombination. Therefore, a normal chromosomal microarray result for chromosome 15 does not exclude the possibility of uniparental disomy. This observation may apply to other chromosomes; however, further study is needed.Genet Med 2012:14(8):753–756


American Journal of Medical Genetics Part A | 2012

A co-occurrence of osteogenesis imperfecta type VI and cystinosis.

Tracy Tucker; Tanya N. Nelson; Sandra Sirrs; Peter J. Roughley; Francis H. Glorieux; Pierre Moffatt; Kamilla Schlade-Bartusiak; Lindsay Brown; Frank Rauch

Osteogenesis imperfecta type VI (OI type VI) is a rare autosomal recessive disorder caused by mutations in the SERPINF1 gene that encodes pigment epithelium‐derived factor (PEDF). Cystinosis is an autosomal recessive lysosomal transport disorder caused by mutations in the CTNS gene. Both SERPINF1 and CTNS are located on chromosome 17p13.3. We describe an individual presenting with both OI type VI and cystinosis. The patient was diagnosed with cystinosis at the age of 11 months and OI type VI on bone biopsy at the age of 8 years. He has sustained over 30 fractures during his lifetime, and at the age of 19 years entered end‐stage renal disease and subsequent renal transplant. An Affymetrix 6.0 array was used to look for areas of loss of heterozygosity on chromosome 17. Sequencing of the SERPINF1 and CTNS genes was performed, followed by quantitative PCR and Western blot of PEDF to characterize the identified mutation. A 6.58 Mb region of homozygosity was identified on the Affymetrix 6.0 array, encompassing both the SERPINF1 and CTNS genes. Sequencing of the genes identified homozygosity for a known pathogenic CTNS mutation and for a novel in‐frame duplication in SERPINF1. Skin fibroblasts produced a markedly reduced amount of SERPINF1 transcript and PEDF protein. This patient has the concurrent phenotype of two rare recessive diseases, cystinosis and OI type VI. We identified for the first time an in‐frame duplication in SERPINF1 that is responsible for the OI type VI phenotype in this patient.


Human Genetics | 2016

Pathogenetics of alveolar capillary dysplasia with misalignment of pulmonary veins

Przemyslaw Szafranski; Tomasz Gambin; Avinash V. Dharmadhikari; Kadir C. Akdemir; Shalini N. Jhangiani; Jennifer Schuette; Nihal Godiwala; Svetlana A. Yatsenko; Jessica Sebastian; Suneeta Madan-Khetarpal; Urvashi Surti; Rosanna G. Abellar; David A. Bateman; Ashley Wilson; Melinda Markham; Jill Slamon; Fernando Santos-Simarro; María Palomares; Julián Nevado; Pablo Lapunzina; Brian Hon-Yin Chung; Wai Lap Wong; Yoyo W. Y. Chu; Gary Tsz Kin Mok; Eitan Kerem; Joel Reiter; Namasivayam Ambalavanan; Scott A. Anderson; David R. Kelly; Joseph T.C. Shieh

Alveolar capillary dysplasia with misalignment of pulmonary veins (ACDMPV) is a lethal lung developmental disorder caused by heterozygous point mutations or genomic deletion copy-number variants (CNVs) of FOXF1 or its upstream enhancer involving fetal lung-expressed long noncoding RNA genes LINC01081 and LINC01082. Using custom-designed array comparative genomic hybridization, Sanger sequencing, whole exome sequencing (WES), and bioinformatic analyses, we studied 22 new unrelated families (20 postnatal and two prenatal) with clinically diagnosed ACDMPV. We describe novel deletion CNVs at the FOXF1 locus in 13 unrelated ACDMPV patients. Together with the previously reported cases, all 31 genomic deletions in 16q24.1, pathogenic for ACDMPV, for which parental origin was determined, arose de novo with 30 of them occurring on the maternally inherited chromosome 16, strongly implicating genomic imprinting of the FOXF1 locus in human lungs. Surprisingly, we have also identified four ACDMPV families with the pathogenic variants in the FOXF1 locus that arose on paternal chromosome 16. Interestingly, a combination of the severe cardiac defects, including hypoplastic left heart, and single umbilical artery were observed only in children with deletion CNVs involving FOXF1 and its upstream enhancer. Our data demonstrate that genomic imprinting at 16q24.1 plays an important role in variable ACDMPV manifestation likely through long-range regulation of FOXF1 expression, and may be also responsible for key phenotypic features of maternal uniparental disomy 16. Moreover, in one family, WES revealed a de novo missense variant in ESRP1, potentially implicating FGF signaling in the etiology of ACDMPV.


American Journal of Medical Genetics Part A | 2008

A child with deletion (14)(q24.3q32.13) and auditory neuropathy.

Kamilla Schlade-Bartusiak; Georgina Macintyre; Janice Zunich; Diane W. Cox

An interstitial deletion in the middle and distal part of chromosome 14 is a rare chromosomal abnormality characterized by a wide spectrum of phenotypic manifestations. We present a patient with a nearly 20 Mb interstitial deletion of chromosome 14q24.3q32.13 determined by FISH, that is associated with minor dysmorphic features, developmental delay, absent speech and auditory neuropathy. The deleted region contains 130 known genes, among them 48 with reported function or association with human disease. The patients phenotype is compared with interstitial deletions of the distal part of chromosome 14 reported previously. We hypothesize, that there is (are) a gene (genes) in the 14q32.11–q32.13 that is (are) important for the hearing process and for which haploinsufficiency can cause auditory neuropathy. Several genes in the region, among them calmodulin, chromogranin A, the goosecoid and FOXN3, can contribute to the observed phenotype. Detailed mapping in additional patients with 14q32 deletions and hearing loss could further define the candidate region.


American Journal of Medical Genetics Part A | 2009

A child with terminal 14q deletion syndrome: Consideration of genotype–phenotype correlations

Kamilla Schlade-Bartusiak; Holly H. Ardinger; Diane W. Cox

Patients with terminal deletions of chromosome 14 usually share a number of clinical features. The syndrome is thought not to be associated with multiple congenital anomalies. We report on a patient having a terminal deletion of about 3.2 Mb, with the breakpoint in 14q32.32. Multiple health problems led to his early death. By molecular techniques (array comparative genomic hybridization (CGH) and fluorescence in situ hybridization (FISH)), we identified two previously reported patients with deletions in the terminal part of chromosome 14 of almost exactly the same size and compare the phenotypes of all three children. The phenotype of the current patient is much more severe than the phenotypes of the two patients reported previously. The patients also present different sets of dysmorphic features described previously as characteristic for 14q deletion syndrome. Molecular cytogenetic mapping showed that the breakpoints in all three patients were clustered within a 240 kb interval. The possibility of recurrent breakpoint location in terminal 14q deletion syndrome, as well as detailed characterization of the spectrum of phenotypes associated with the syndrome, will require the investigation of multiple patients with similar deletions in 14q.


Biochimie | 2009

A minigene approach for analysis of ATP7B splice variants in patients with Wilson disease.

Anna M.E. Wilson; Kamilla Schlade-Bartusiak; Jean-Luc Tison; Georgina Macintyre; Diane W. Cox

Wilson disease (WND) is an autosomal recessive condition that results in accumulation of copper in the liver and brain when a membrane bound copper transporter, ATP7B, is defective. ATP7B is expressed in hepatic, brain and kidney cells, and a defect can lead to liver, neurological and renal damage in WND patients. Presentation is variable with a broad range of age of onset and symptoms, and not all biochemical signs used in diagnosis are found in every patient. Therefore, diagnosis by mutation analysis is particularly important. To date, there are approximately 380 probable disease-causing variants in ATP7B, 33 of which are splice site variants that are predicted to affect splicing, based on their location. Few of these splice site variants have been analyzed in vivo. Some exonic variations also have the potential to affect splicing. The aim of this project was to use minigenes for transcript analysis. We have chosen exon 8 as our focus and have cloned a wild-type three-exon minigene into a mammalian expression vector. After transfection, extracted RNA was analyzed by reverse transcription PCR and accurate splicing was detected. This minigene will facilitate the analysis of the numerous potential splice variants identified in exon 8 of ATP7B, with the advantage that patient cell lines are not required for each variant.


American Journal of Medical Genetics Part A | 2014

Brain MRI abnormalities and spectrum of neurological and clinical findings in three patients with proximal 16p11.2 microduplication

Isabel Filges; Steven Sparagana; Michael A. Sargent; Kathryn Selby; Kamilla Schlade-Bartusiak; Gregg T. Lueder; Amy Robichaux-Viehoever; Bradley L. Schlaggar; Joshua S. Shimony; Marwan Shinawi

The phenotype of recurrent ∼600 kb microdeletion and microduplication on proximal 16p11.2 is characterized by a spectrum of neurodevelopmental impairments including developmental delay and intellectual disability, epilepsy, autism and psychiatric disorders which are all subject to incomplete penetrance and variable expressivity. A variety of brain MRI abnormalities were reported in patients with 16p11.2 rearrangements, but no systematic correlation has been studied among patients with similar brain anomalies, their neurodevelopmental and clinical phenotypes. We present three patients with the proximal 16p11.2 microduplication exhibiting significant developmental delay, anxiety disorder and other variable clinical features. Our patients have abnormal brain MRI findings of cerebral T2 hyperintense foci (3/3) and ventriculomegaly (2/3). The neuroradiological or neurological findings in two cases prompted an extensive diagnostic work‐up. One patient has exhibited neurological regression and progressive vision impairment and was diagnosed with juvenile neuronal ceroid‐lipofuscinosis. We compare the clinical course and phenotype of these patients in regard to the clinical significance of the cerebral lesions and the need for MRI surveillance. We conclude that in all three patients the lesions were not progressive, did not show any sign of malignant transformation and could not be correlated to specific clinical features. We discuss potential etiologic mechanisms that may include overexpression of genes within the duplicated region involved in control of cell proliferation and complex molecular mechanisms such as the MAPK/ERK pathway. Systematic studies in larger cohorts are needed to confirm our observation and to establish the prevalence and clinical significance of these neuroanatomical abnormalities in patients with 16p11.2 duplications.


American Journal of Medical Genetics Part A | 2012

BPES with atypical premature ovarian insufficiency, and evidence of mitotic recombination, in a woman with trisomy X and a translocation t(3;11)(q22.3;q14.1)†

Kamilla Schlade-Bartusiak; Lindsay Brown; Brenda Lomax; Helene Bruyere; Tanya L. Gillan; Sara Jane Hamilton; Barbara McGillivray; Patrice Eydoux

Blepharophimosis–ptosis–epicanthus inversus syndrome (BPES) is a rare autosomal dominant disorder characterized by a complex dysgenesis of the eyelids and premature ovarian insufficiency. FOXL2 located at 3q22.3, encoding a forkhead transcription factor, is the only gene known to be responsible for BPES. We describe a patient diagnosed with BPES with atypical ovarian failure, characterized by normal levels of gonadotropins, who was found to have trisomy X as well as a translocation (3;11)(q22.3;q14.1). The translocation breakpoint at 3q22.3 is located upstream of the FOXL2 gene and most likely causes BPES by separating the FOXL2 transcription unit from its cis‐regulatory sequences. By array analysis we detected mosaicism for the balanced and an unbalanced form of the translocation in blood cells. We propose mitotic recombination as the likely mechanism of the mosaicism formation. Mitotic recombination is a common phenomenon in human cells. Thus, we hypothesize that it may be one of the mechanisms responsible for cryptic imbalances and possible abnormal phenotypes in some carriers of balanced rearrangements.

Collaboration


Dive into the Kamilla Schlade-Bartusiak's collaboration.

Top Co-Authors

Avatar

Lindsay Brown

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Patrice Eydoux

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar

Tracy Tucker

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar

Tanya N. Nelson

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Anna Lehman

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge