Kamini Singh
Cleveland Clinic
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Kamini Singh.
Methods of Molecular Biology | 2012
Arishya Sharma; Kamini Singh; Alexandru Almasan
The DNA damage response can be initiated in response to a variety of stress signals that are encountered during physiological processes or in response to exogenous cues, such as ionizing radiation or DNA-damaging therapeutic agents. A number of methods have been developed to examine the morphological, biochemical, and molecular changes that take place during the DNA damage response. When cells are exposed to ionizing radiation or DNA-damaging chemotherapeutic agents, double-stranded breaks (DSBs) are generated that rapidly result in the phosphorylation of histone H2A variant H2AX. Because phosphorylation of H2AX at Ser 139 (γ-H2AX) is abundant, fast, and correlates well with each DSB, it is the most sensitive marker that can be used to examine the DNA damage produced and the subsequent repair of the DNA lesion. γ-H2AX can be detected by immunoblotting and immunostaining using microscopic or flow cytometric detection. Since γ-H2AX can be also generated during DNA replication, as a consequence of apoptosis, or as it is found associated with residual DNA damage, it is important to determine the kinetics, number, size, and morphology of γ-H2AX-associated foci. This chapter describes a few standard protocols that we have successfully used in our laboratory for a number of experimental systems, primarily hematologic and epithelial cells grown in culture.
Blood | 2011
Sayer Al-Harbi; Brian T. Hill; Suparna Mazumder; Kamini Singh; Jennifer DeVecchio; Gaurav S. Choudhary; Lisa Rybicki; Matt Kalaycio; Jaroslaw P. Maciejewski; Janet A. Houghton; Alexandru Almasan
The antiapoptotic BCL-2 proteins regulate lymphocyte survival and are over-expressed in lymphoid malignancies, including chronic lymphocytic leukemia. The small molecule inhibitor ABT-737 binds with high affinity to BCL-2, BCL-XL, and BCL-W but with low affinity to MCL-1, BFL-1, and BCL-B. The active analog of ABT-737, navitoclax, has shown a high therapeutic index in lymphoid malignancies; developing a predictive marker for it would be clinically valuable for patient selection or choice of drug combinations. Here we used RT-PCR as a highly sensitive and quantitative assay to compare expression of antiapoptotic BCL-2 genes that are known to be targeted by ABT-737. Our findings reveal that the relative ratio of MCL-1 and BFL-1 to BCL-2 expression provides a highly significant linear correlation with ABT-737 sensitivity (r = 0.6, P < .001). In contrast, antiapoptotic transcript levels, used individually or in combination for high or low affinity ABT-737-binding proteins, could not predict ABT-737 sensitivity. The (MCL-1 + BFL-1)/BCL-2 ratio was validated in a panel of leukemic cell lines subjected to genetic and pharmacologic manipulations. Changes after ABT-737 treatment included increased expression of BFL-1 and BCL-B that may contribute to treatment resistance. This study defines a highly significant BCL-2 expression index for predicting the response of CLL to ABT-737.
American Journal of Physiology-endocrinology and Metabolism | 2012
Jia Qiu; Cynthia Tsien; Samjhana Thapalaya; Arvind Narayanan; Conrad C. Weihl; James Kain Ching; Bijan Eghtesad; Kamini Singh; Xiaoming Fu; George R. Dubyak; Christine McDonald; Alex Almasan; Stanley L. Hazen; Sathyamangla V. Naga Prasad; Srinivasan Dasarathy
Hyperammonemia and sarcopenia (loss of skeletal muscle) are consistent abnormalities in cirrhosis and portosystemic shunting. We have shown that muscle ubiquitin-proteasome components are not increased with hyperammonemia despite sarcopenia. This suggests that an alternative mechanism of proteolysis contributes to sarcopenia in cirrhosis. We hypothesized that autophagy could be this alternative pathway since we observed increases in classic autophagy markers, increased LC3 lipidation, beclin-1 expression, and p62 degradation in immunoblots of skeletal muscle protein in cirrhotic patients. We observed similar changes in these autophagy markers in the portacaval anastamosis (PCA) rat model. To determine the mechanistic relationship between hyperammonemia and autophagy, we exposed murine C(2)C(12) myotubes to ammonium acetate. Significant increases in LC3 lipidation, beclin-1 expression, and p62 degradation occurred by 1 h, whereas autophagy gene expression (LC3, Atg5, Atg7, beclin-1) increased at 24 h. C(2)C(12) cells stably expressing GFP-LC3 or GFP-mCherry-LC3 constructs showed increased formation of mature autophagosomes supported by electron microscopic studies. Hyperammonemia also increased autophagic flux in mice, as quantified by an in vivo autophagometer. Because hyperammonemia induces nitration of proteins in astrocytes, we quantified global muscle protein nitration in cirrhotic patients, in the PCA rat, and in C(2)C(12) cells treated with ammonium acetate. Increased protein nitration was observed in all of these systems. Furthermore, colocalization of nitrated proteins with GFP-LC3-positive puncta in hyperammonemic C(2)C(12) cells suggested that autophagy is involved in degradation of nitrated proteins. These observations show that increased skeletal muscle autophagy in cirrhosis is mediated by hyperammonemia and may contribute to sarcopenia of cirrhosis.
PLOS ONE | 2013
Payel Chatterjee; Gaurav S. Choudhary; Arishya Sharma; Kamini Singh; Warren D. W. Heston; Jay P. Ciezki; Eric A. Klein; Alexandru Almasan
Exposure to genotoxic agents, such as irradiation produces DNA damage, the toxicity of which is augmented when the DNA repair is impaired. Poly (ADP-ribose) polymerase (PARP) inhibitors were found to be “synthetic lethal” in cells deficient in BRCA1 and BRCA2 that impair homologous recombination. However, since many tumors, including prostate cancer (PCa) rarely have on such mutations, there is considerable interest in finding alternative determinants of PARP inhibitor sensitivity. We evaluated the effectiveness of radiation in combination with the PARP inhibitor, rucaparib in PCa cells. The combination index for clonogenic survival following radiation and rucaparib treatments revealed synergistic interactions in a panel of PCa cell lines, being strongest for LNCaP and VCaP cells that express ETS gene fusion proteins. These findings correlated with synergistic interactions for senescence activation, as indicated by β--galactosidase staining. Absence of PTEN and presence of ETS gene fusion thus facilitated activation of senescence, which contributed to decreased clonogenic survival. Increased radiosensitivity in the presence of rucaparib was associated with persistent DNA breaks, as determined by χ-H2AX, p53BP1, and Rad51 foci. VCaP cells, which harbor the TMPRSS2-ERG gene fusion and PC3 cells that stably express a similar construct (fusion III) showed enhanced sensitivity towards rucaparib, which, in turn, increased the radiation response to a similar extent as the DNA-PKcs inhibitor NU7441. Rucaparib radiosensitized PCa cells, with a clear benefit of low dose-rate radiation (LDR) administered over a longer period of time that caused enhanced DNA damage. LDR mimicking brachytherapy, which is used successfully in the clinic, was most effective when combined with rucaparib by inducing persistent DNA damage and senescence, leading to decreased clonogenic survival. This combination was most effective in the presence of the TMPRSS2-ERG and in the absence of PTEN, indicating clinical potential for brachytherapy in patients with intermediate and high risk PCa.
Autophagy | 2012
Kamini Singh; Shigemi Matsuyama; Judith Drazba; Alexandru Almasan
Autophagy regulates cell survival and cell death upon various cellular stresses, yet the molecular signaling events involved are not well defined. Here, we established the function of a proteolytic Cyclin E fragment (p18-CycE) in DNA damage-induced autophagy, apoptosis, and senescence. p18-CycE was identified in hematopoietic cells undergoing DNA damage-induced apoptosis. In epithelial cells exposed to DNA damage, chronic but not transient expression of p18-CycE leads to higher turnover of LC3 I/II and increased emergence of autophagosomes and autolysosomes. Levels of p18-CycE, which was generated by proteolytic cleavage of endogenous Cyclin E, were greatly increased by chloroquine and correlated with LC 3II conversion. Preventing p18-CycE genesis blocked conversion of LC3 I to LC3 II. Upon DNA damage, cytoplasmic ataxia-telangiectasia-mutated (ATM) was phosphorylated in p18-CycE-expressing cells resulting in sustained activation of the adenosine-mono-phosphate-dependent kinase (AMPK). These lead to sustained activation of mammalian autophagy-initiating kinase ULK1, which was abrogated upon inhibiting ATM and AMPK phosphorylation. Moreover, p18-CycE was degraded via autophagy followed by induction of senescence. Both autophagy and senescence were prevented by inhibiting autophagy, which leads to increased apoptosis in p18-CycE-expressing cells by stabilizing p18-CycE expression. Senescence was further associated with cytoplasmic co-localization and degradation of p18-CycE and Ku70. In brief, chronic p18-CycE expression-induced autophagy leads to clearance of p18-CycE following DNA damage and induction of senescence. Autophagy inhibition stabilized the cytoplasmic p18-CycE-Ku70 complex leading to apoptosis. Thus, our findings define how chronic apoptotic stress and DNA damage initiate autophagy and regulate cell survival through senescence and/or apoptosis.
Clinical Cancer Research | 2013
Ning Zhou; Kamini Singh; Maria Carmen Mir; Yvonne Parker; Daniel Lindner; Robert Dreicer; Jeffrey A. Ecsedy; Zhongfa Zhang; Bin Tean Teh; Alexandru Almasan; Donna E. Hansel
Purpose: Despite more than 70,000 new cases of bladder cancer in the United States annually, patients with advanced disease have a poor prognosis due to limited treatment modalities. We evaluated Aurora kinase A, identified as an upregulated candidate molecule in bladder cancer, as a potential therapeutic target. Experimental Design: Gene expression in human bladder cancer samples was evaluated using RNA microarray and quantitative reverse transcriptase PCR. Effects of the Aurora kinase A inhibitor MLN8237 (Millennium) on cell dynamics in malignant T24 and UM-UC-3 and papilloma-derived RT4 bladder cells were evaluated in vitro and in vivo in a mouse xenograft model. Results: A set of 13 genes involved in the mitotic spindle checkpoint, including Aurora kinases A and B, were upregulated in human urothelial carcinoma compared with normal urothelium. The Aurora kinase A inhibitor MLN8237 induced cell-cycle arrest, aneuploidy, mitotic spindle failure, and apoptosis in the human bladder cancer cell lines T24 and UM-UC-3. MLN8237 also arrested tumor growth when administered orally over 4 weeks in a mouse bladder cancer xenograft model. Finally, in vitro sequential administration of MLN8237 with either paclitaxel or gemcitabine resulted in synergistic cytotoxic effects in T24 cells. Conclusions: Mitotic spindle checkpoint dysfunction is a common characteristic of human urothelial carcinoma and can be exploited with pharmacologic Aurora A inhibition. Given our demonstration of the ability of the Aurora A inhibitor MLN8237 to inhibit growth of bladder cancer in vitro and in vivo, we conclude that Aurora kinase inhibitors warrant further therapeutic investigation in bladder cancer. Clin Cancer Res; 19(7); 1717–28. ©2013 AACR.
Molecular Cancer | 2014
Kamini Singh; Arishya Sharma; Maria Carmen Mir; Judith Drazba; Warren D. W. Heston; Cristina Magi-Galluzzi; Donna E. Hansel; Brian P. Rubin; Eric A. Klein; Alexandru Almasan
BackgroundMacroautophagy is a catabolic process that can mediate cell death or survival. Apo2 ligand (Apo2L)/tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) treatment (TR) is known to induce autophagy. Here we investigated whether SQSTM1/p62 (p62) overexpression, as a marker of autophagic flux, was related to aggressiveness of human prostate cancer (PCa) and whether autophagy regulated the treatment response in sensitive but not resistant PCa cell lines.MethodsImmunostaining and immunoblotting analyses of the autophagic markers p62 [in PCa tissue microarrays (TMAs) and PCa cell lines] and LC3 (in PCa cell lines), transmission electron microscopy, and GFP-mCherry-LC3 were used to study autophagy induction and flux. The effect of autophagy inhibition using pharmacologic (3-methyladenine and chloroquine) and genetic [(short hairpin (sh)-mediated knock-down of ATG7 and LAMP2) and small interfering (si)RNA-mediated BECN1 knock-down] approaches on TR-induced cell death was assessed by clonogenic survival, sub-G1 DNA content, and annexinV/PI staining by flow cytometry. Caspase-8 activation was determined by immunoblotting.ResultsWe found that increased cytoplasmic expression of p62 was associated with high-grade PCa, indicating that autophagy signaling might be important for survival in high-grade tumors. TR-resistant cells exhibited high autophagic flux, with more efficient clearance of p62-aggregates in four TR-resistant PCa cell lines: C4-2, LNCaP, DU145, and CWRv22.1. In contrast, autophagic flux was low in TR-sensitive PC3 cells, leading to accumulation of p62-aggregates. Pharmacologic (chloroquine or 3-methyladenine) and genetic (shATG7 or shLAMP2) inhibition of autophagy led to cell death in TR-resistant C4-2 cells. shATG7-expressing PC3 cells, were less sensitive to TR-induced cell death whereas those shLAMP2-expressing were as sensitive as shControl-expressing PC3 cells. Inhibition of autophagic flux using chloroquine prevented clearance of p62 aggregates, leading to caspase-8 activation and cell death in C4-2 cells. In PC3 cells, inhibition of autophagy induction prevented p62 accumulation and hence caspase-8 activation.ConclusionsWe show that p62 overexpression correlates with advanced stage human PCa. Pharmacologic and genetic inhibition of autophagy in PCa cell lines indicate that autophagic flux can determine the cellular response to TR by regulating caspase-8 activation. Thus, combining various autophagic inhibitors may have a differential impact on TR-induced cell death.
Cell Death and Disease | 2013
Arishya Sharma; Kamini Singh; Suparna Mazumder; Brian T. Hill; M Kalaycio; Alexandru Almasan
The purine analog fludarabine (Fd) is an essential therapeutic for chronic lymphocytic leukemia (CLL). Innate or acquired resistance to Fd is a significant clinical problem and is largely mediated by increased expression of BCL-2 family members. The antiapoptotic BCL-2 family proteins inhibit both apoptosis and autophagy, therefore, downregulation of antiapoptotic BCL-2 family proteins and enhanced autophagy must coexist in cells dying in response to an apoptosis inducing therapeutic. However, in the drug-resistant cells that have an increased dependence on antiapoptotic proteins, whether autophagy is also inhibited remains unclear. Here, we examined the role of the BCL-2 family in regulating cell death and autophagy in leukemic cell lines and their derivative isogenic Fd-resistant (FdR) cells. MCL-1 degradation following Fd treatment freed the proapoptotic effectors BIM and BECN1, thus leading to cell death-associated autophagy in Fd-sensitive cells. However, in FdR cells, low BIM expression and BECN1 sequestration by MCL-1 prevented cell death. Consistently, in sensitive cells inhibition of apoptosis using siBIM and of both the early-phase autophagy nucleation steps by siBECN1, shATG7 or 3-methyladenine and the late-phase autophagy by shLAMP2, significantly reduced Fd-induced cell death. Paradoxically, FdR cells were addicted to basal autophagy, which was dependent on AMP-activated protein kinase (AMPK) but not BECN1. Moreover, in FdR cells, inhibition of autophagy by shLAMP2, but not siBECN1, enhanced cell death. The BH3-mimetic obatoclax released BIM and BECN1 from MCL-1 in Fd-sensitive and BECN1 from MCL-1 in FdR cells, and was effective at killing both Fd-sensitive and - resistant leukemic cells, including primary CLL cells. Therefore, a differential regulation of autophagy through BECN1 and AMPK signaling in Fd-sensitive and - resistant cells determines the different possible outcomes of autophagy inhibition. These findings suggest effective means to overcome Fd resistance by induction of BIM-dependent apoptosis and activation of BECN1-dependent autophagy.
Bioinformatics | 2017
Yi Zhong; Theofanis Karaletsos; Philipp Drewe; Vipin T. Sreedharan; David Kuo; Kamini Singh; Hans-Guido Wendel; Gunnar Rätsch
Motivation: Deep sequencing based ribosome footprint profiling can provide novel insights into the regulatory mechanisms of protein translation. However, the observed ribosome profile is fundamentally confounded by transcriptional activity. In order to decipher principles of translation regulation, tools that can reliably detect changes in translation efficiency in case–control studies are needed. Results: We present a statistical framework and an analysis tool, RiboDiff, to detect genes with changes in translation efficiency across experimental treatments. RiboDiff uses generalized linear models to estimate the over-dispersion of RNA-Seq and ribosome profiling measurements separately, and performs a statistical test for differential translation efficiency using both mRNA abundance and ribosome occupancy. Availability and Implementation: RiboDiff webpage http://bioweb.me/ribodiff. Source code including scripts for preprocessing the FASTQ data are available at http://github.com/ratschlab/ribodiff. Contacts: [email protected] or [email protected] Supplementary information: Supplementary data are available at Bioinformatics online.
BMC Bioinformatics | 2015
Yi Zhong; Phillip Drewe; Andrew L. Wolfe; Kamini Singh; Hans-Guido Wendel; Gunnar Rätsch
Background Protein translation is a fundamental biochemical process and the regulation of this process in response to a variety of changes has been demonstrated to play a key role in cellular functional activity. Recently, the translational control of oncogenes is implicated in many cancers [1]. Results We recently reported a translation initiation factor eIF4A RNA helicase-dependent mechanism of translational control that contributes to oncogenesis and underlies the anticancer effects of drug silvestrol [2]. Inhibition of eIF4A with silvestrol has powerful therapeutic effects