Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kamran Safi is active.

Publication


Featured researches published by Kamran Safi.


Ecology | 2009

PanTHERIA: a species-level database of life history, ecology, and geography of extant and recently extinct mammals

Kate E. Jones; Jon Bielby; Marcel Cardillo; Susanne A. Fritz; Justin O'Dell; C. David L. Orme; Kamran Safi; Wes Sechrest; Elizabeth H. Boakes; Chris Carbone; Christina Connolly; Michael J. Cutts; Janine K. Foster; Richard Grenyer; Michael B. Habib; Christopher A. Plaster; Samantha A. Price; Elizabeth A. Rigby; Janna Rist; Amber G. F. Teacher; Olaf R. P. Bininda-Emonds; John L. Gittleman; Georgina M. Mace; Andy Purvis

Analyses of life-history, ecological, and geographic trait differences among species, their causes, correlates, and likely consequences are increasingly important for understanding and conserving biodiversity in the face of rapid global change. Assembling multispecies trait data from diverse literature sources into a single comprehensive data set requires detailed consideration of methods to reliably compile data for particular species, and to derive single estimates from multiple sources based on different techniques and definitions. Here we describe PanTHERIA, a species-level data set compiled for analysis of life history, ecology, and geography of all known extant and recently extinct mammals. PanTHERIA is derived from a database capable of holding multiple geo-referenced values for variables within a species containing 100 740 lines of biological data for extant and recently extinct mammalian species, collected over a period of three years by 20 individuals. PanTHERIA also includes spatial databases o...


Science | 2009

Biodiversity Conservation and the Millennium Development Goals

Jeffrey D. Sachs; Jonathan E. M. Baillie; William J. Sutherland; Paul R. Armsworth; Neville Ash; John Beddington; Tim M. Blackburn; Ben Collen; Barry Gardiner; Kevin J. Gaston; H. Charles J. Godfray; Rhys E. Green; Paul H. Harvey; Brett House; Sandra Knapp; Noëlle F. Kümpel; David W. Macdonald; Georgina M. Mace; James Mallet; Adam Matthews; Robert M. May; Owen L. Petchey; Andy Purvis; Dilys Roe; Kamran Safi; Kerry Turner; Matt Walpole; Robert T. Watson; Kate E. Jones

Any near-term gains in reducing extreme poverty will be maintained only if environmental sustainability is also achieved. The Millennium Development Goals (MDGs) are designed to inspire efforts to improve peoples lives by, among other priorities, halving extreme poverty by 2015 (1). Analogously, concern about global decline in biodiversity and degradation of ecosystem services (2) gave rise in 1992 to the Convention on Biological Diversity (CBD). The CBD target “to achieve by 2010 a significant reduction of the current rate of biodiversity loss” was incorporated into the MDGs in 2002. Our lack of progress toward the 2010 target (3, 4) could undermine achievement of the MDGs and poverty reduction in the long term. With increasing global challenges, such as population growth, climate change, and overconsumption of ecosystem services, we need further integration of the poverty alleviation and biodiversity conservation agendas.


Philosophical Transactions of the Royal Society B | 2011

Understanding global patterns of mammalian functional and phylogenetic diversity

Kamran Safi; Marcus Vinicius Cianciaruso; Rafael D. Loyola; Daniel Brito; Katrina Armour-Marshall; José Alexandre Felizola Diniz-Filho

Documenting and exploring the patterns of diversity of life on Earth has always been a central theme in biology. Species richness despite being the most commonly used measure of diversity in macroecological studies suffers from not considering the evolutionary and ecological differences among species. Phylogenetic diversity (PD) and functional diversity (FD) have been proposed as alternative measures to overcome this limitation. Although species richness, PD and FD are closely related, their relationships have never been investigated on a global scale. Comparing PD and FD with species richness corroborated the general assumptions of surrogacy of the different diversity measures. However, the analysis of the residual variance suggested that the mismatches between the diversity measures are influenced by environmental conditions. PD increased relative to species richness with increasing mean annual temperature, whereas FD decreased with decreasing seasonality relative to PD. We also show that the tropical areas are characterized by a FD deficit, a phenomenon, that suggests that in tropical areas more species can be packed into the ecological space. We discuss potential mechanisms that could have resulted in the gradient of spatial mismatch observed in the different biodiversity measures and draw parallels to local scale studies. We conclude that the use of multiple diversity measures on a global scale can help to elucidate the relative importance of historical and ecological processes shaping the present gradients in mammalian diversity.


Journal of Animal Ecology | 2012

A dynamic Brownian bridge movement model to estimate utilization distributions for heterogeneous animal movement

Bart Kranstauber; Roland Kays; Scott D. LaPoint; Martin Wikelski; Kamran Safi

1. The recently developed Brownian bridge movement model (BBMM) has advantages over traditional methods because it quantifies the utilization distribution of an animal based on its movement path rather than individual points and accounts for temporal autocorrelation and high data volumes. However, the BBMM assumes unrealistic homogeneous movement behaviour across all data. 2. Accurate quantification of the utilization distribution is important for identifying the way animals use the landscape. 3. We improve the BBMM by allowing for changes in behaviour, using likelihood statistics to determine change points along the animals movement path. 4. This novel extension, outperforms the current BBMM as indicated by simulations and examples of a territorial mammal and a migratory bird. The unique ability of our model to work with tracks that are not sampled regularly is especially important for GPS tags that have frequent failed fixes or dynamic sampling schedules. Moreover, our model extension provides a useful one-dimensional measure of behavioural change along animal tracks. 5. This new method provides a more accurate utilization distribution that better describes the space use of realistic, behaviourally heterogeneous tracks.


Animal Behaviour | 2003

Secretions of the interaural gland contain information about individuality and colony membership in the Bechstein's bat

Kamran Safi; Gerald Kerth

Mammals use chemical signals for individual and kin recognition, to establish social hierarchies, mark territories and choose mates. The nocturnal and social lifestyle of bats suggests that, besides acoustic signals, they also use scent to communicate. We investigated in the communally breeding Bechstein’s bat, Myotis bechsteinii, whether secretions of the facial interaural gland contain information that can be used for individual and colony recognition. Since female Bechstein’s bats live in closed societies and show cooperative behaviour, we predicted they would recognize colony members. We analysed interaural gland secretions, which we repeatedly sampled from 85 females belonging to four free-ranging colonies. Gas chromatography/mass spectrometry profiles were individually specific and differed between colonies. Comparing odour profiles between colonies we found a relation between chemical similarity and the mitochondrial haplotype of colony members. Within colonies there was no correlation between mass spectrometer profile similarity and genetic relatedness. Our results suggest that female Bechstein’s bats may use interaural gland secretions for individual and colony recognition but not to infer kinship directly.


Proceedings of the Royal Society of London. Series B: Biological Sciences (London) | 2005

Adaptation of brain regions to habitat complexity: A comparative analysis in bats (Chiroptera)

Kamran Safi; Dina K. N. Dechmann

Vertebrate brains are organized in modules which process information from sensory inputs selectively. Therefore they are probably under different evolutionary pressures. We investigated the impact of environmental influences on specific brain centres in bats. We showed in a phylogenetically independent contrast analysis that the wing area of a species corrected for body size correlated with estimates of habitat complexity. We subsequently compared wing area, as an indirect measure of habitat complexity, with the size of regions associated with hearing, olfaction and spatial memory, while controlling for phylogeny and body mass. The inferior colliculi, the largest sub-cortical auditory centre, showed a strong positive correlation with wing area in echolocating bats. The size of the main olfactory bulb did not increase with wing area, suggesting that the need for olfaction may not increase during the localization of food and orientation in denser habitat. As expected, a larger wing area was linked to a larger hippocampus in all bats. Our results suggest that morphological adaptations related to flight and neuronal capabilities as reflected by the sizes of brain regions coevolved under similar ecological pressures. Thus, habitat complexity presumably influenced and shaped sensory abilities in this mammalian order independently of each other.


Philosophical Transactions of the Royal Society B | 2014

Satellite remote sensing, biodiversity research and conservation of the future

Nathalie Pettorelli; Kamran Safi; Woody Turner

Assessing and predicting ecosystem responses to global environmental change and its impacts on human well-being are high priority targets for the scientific community. The potential for synergies between remote sensing science and ecology, especially satellite remote sensing and conservation biology, has been highlighted by many in the past. Yet, the two research communities have only recently begun to coordinate their agendas. Such synchronization is the key to improving the potential for satellite data effectively to support future environmental management decision-making processes. With this themed issue, we aim to illustrate how integrating remote sensing into ecological research promotes a better understanding of the mechanisms shaping current changes in biodiversity patterns and improves conservation efforts. Added benefits include fostering innovation, generating new research directions in both disciplines and the development of new satellite remote sensing products.


PLOS ONE | 2012

Phylogenetically-informed priorities for amphibian conservation.

Nick J. B. Isaac; David W. Redding; Helen M. R. Meredith; Kamran Safi

The amphibian decline and extinction crisis demands urgent action to prevent further large numbers of species extinctions. Lists of priority species for conservation, based on a combination of species’ threat status and unique contribution to phylogenetic diversity, are one tool for the direction and catalyzation of conservation action. We describe the construction of a near-complete species-level phylogeny of 5713 amphibian species, which we use to create a list of evolutionarily distinct and globally endangered species (EDGE list) for the entire class Amphibia. We present sensitivity analyses to test the robustness of our priority list to uncertainty in species’ phylogenetic position and threat status. We find that both sources of uncertainty have only minor impacts on our ‘top 100‘ list of priority species, indicating the robustness of the approach. By contrast, our analyses suggest that a large number of Data Deficient species are likely to be high priorities for conservation action from the perspective of their contribution to the evolutionary history.


Genes, Brain and Behavior | 2010

Consistent behavioral phenotype differences between inbred mouse strains in the IntelliCage

S. Krackow; Elisabetta Vannoni; Alina Codita; Abdul H. Mohammed; Francesca Cirulli; Igor Branchi; Enrico Alleva; A. Reichelt; A. Willuweit; Vootele Voikar; Giovanni Colacicco; David P. Wolfer; J. U. F. Buschmann; Kamran Safi; Hans-Peter Lipp

The between‐laboratory effects on behavioral phenotypes and spatial learning performance of three strains of laboratory mice known for divergent behavioral phenotypes were evaluated in a fully balanced and synchronized study using a completely automated behavioral phenotyping device (IntelliCage). Activity pattern and spatial conditioning performance differed consistently between strains, i.e. exhibited no interaction with the between‐laboratory factor, whereas the gross laboratory effect showed up significantly in the majority of measures. It is argued that overall differences between laboratories may not realistically be preventable, as subtle differences in animal housing and treatment will not be controllable, in practice. However, consistency of strain (or treatment) effects appears to be far more important in behavioral and brain sciences than the absolute overall level of such measures. In this respect, basic behavioral and learning measures proved to be highly consistent in the IntelliCage, therefore providing a valid basis for meaningful research hypothesis testing. Also, potential heterogeneity of behavioral status because of environmental and social enrichment has no detectable negative effect on the consistency of strain effects. We suggest that the absence of human interference during behavioral testing is the most prominent advantage of the IntelliCage and suspect that this is likely responsible for the between‐laboratory consistency of findings, although we are aware that this ultimately needs direct testing.


Biology Letters | 2005

Bigger is not always better: when brains get smaller

Kamran Safi; Marc A Seid; Dina K. N. Dechmann

Many studies assume that an increase in brain size is beneficial. However, the costs of producing and maintaining a brain are high, and we argue that brain size should be secondarily reduced by natural selection whenever the costs outweigh the benefits. Our results confirm this by showing that brain size is subject to bidirectional selection. Relative to the ancestral state, brain size in bats has been reduced in fast flyers, while it has increased in manoeuvrable flyers adapted to flight in complex habitats. This study emphasizes that brain reduction and enlargement are equally important, and they should both be considered when investigating brain size evolution.

Collaboration


Dive into the Kamran Safi's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kate E. Jones

University College London

View shared research outputs
Top Co-Authors

Avatar

Gerald Kerth

University of Greifswald

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Andy Purvis

Imperial College London

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge