Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kamran Yunus is active.

Publication


Featured researches published by Kamran Yunus.


Physical Chemistry Chemical Physics | 2012

Surface morphology and surface energy of anode materials influence power outputs in a multi-channel mediatorless bio-photovoltaic (BPV) system

Paolo Bombelli; Marie Zarrouati; Rebecca Jayne Thorne; Kenneth Schneider; Stephen J. L. Rowden; Akin Ali; Kamran Yunus; Petra J. Cameron; Adrian C. Fisher; D. Ian Wilson; Christopher J. Howe; Alistair J. McCormick

Bio-photovoltaic cells (BPVs) are a new photo-bio-electrochemical technology for harnessing solar energy using the photosynthetic activity of autotrophic organisms. Currently power outputs from BPVs are generally low and suffer from low efficiencies. However, a better understanding of the electrochemical interactions between the microbes and conductive materials will be likely to lead to increased power yields. In the current study, the fresh-water, filamentous cyanobacterium Pseudanabaena limnetica (also known as Oscillatoria limnetica) was investigated for exoelectrogenic activity. Biofilms of P. limnetica showed a significant photo response during light-dark cycling in BPVs under mediatorless conditions. A multi-channel BPV device was developed to compare quantitatively the performance of photosynthetic biofilms of this species using a variety of different anodic conductive materials: indium tin oxide-coated polyethylene terephthalate (ITO), stainless steel (SS), glass coated with a conductive polymer (PANI), and carbon paper (CP). Although biofilm growth rates were generally comparable on all materials tested, the amplitude of the photo response and achievable maximum power outputs were significantly different. ITO and SS demonstrated the largest photo responses, whereas CP showed the lowest power outputs under both light and dark conditions. Furthermore, differences in the ratios of light : dark power outputs indicated that the electrochemical interactions between photosynthetic microbes and the anode may differ under light and dark conditions depending on the anodic material used. Comparisons between BPV performances and material characteristics revealed that surface roughness and surface energy, particularly the ratio of non-polar to polar interactions (the CQ ratio), may be more important than available surface area in determining biocompatibility and maximum power outputs in microbial electrochemical systems. Notably, CP was readily outperformed by all other conductive materials tested, indicating that carbon may not be an optimal substrate for microbial fuel cell operation.


Optics Express | 2006

The application of frequency-domain Fluorescence Lifetime Imaging Microscopy as a quantitative analytical tool for microfluidic devices

Alan D. Elder; Sinéad M. Matthews; Johannes Swartling; Kamran Yunus; Jonathan H. Frank; Colin Brennan; Adrian C. Fisher; Clemens F. Kaminski

We describe the application of wide-field frequency domain Fluorescence Lifetime Imaging Microscopy (FLIM) to imaging in microfluidic devices. FLIM is performed using low cost, intensity modulated Light Emitting Diodes (LEDs) for illumination. The use of lifetime imaging for quantitative analysis within such devices is demonstrated by mapping the molecular diffusion of iodide ions across a microchannel.


Electrochemistry Communications | 2002

Hydrodynamic voltammetry in microreactors: multiphase flow

Kamran Yunus; C.B Marks; Adrian C. Fisher; D.W.E Allsopp; T.J. Ryan; Robert A. W. Dryfe; Simon S. Hill; E.P.L. Roberts; C.M Brennan

Abstract A new hydrodynamic microelectrochemical reactor design is presented for the voltammetric sensing of chemical species contained within two immiscible liquid streams flowing within rectangular ducts, in direct contact. This article describes the design, fabrication and experimental characterisation of the device. A microfabricated rectangular duct (of typical dimensions: height 75 μm , width 500 μ m and length 3 cm) was constructed using FOTURAN glass and standard photolithographic procedures. Microelectrode sensors were positioned on one internal duct wall with a geometry to permit separate voltammetric monitoring of the two solvent phases. Reagent solutions containing N , N , N ′ , N ′ -tetramethyl-1,4-phenylene diamine in 1,2-dichloroethane and hexaamineruthenium(III)chloride in water were pumped through the device under laminar flow conditions. Linear sweep voltammetric measurements were performed separately on the two electrolyte streams and the variation of the transport limited current as a function of volume flow rate through the cell monitored. Under conditions where stable flow was obtained the current flow rate relationship was observed to follow analogous voltammetric behaviour to that observed in macroscopic flow cell devices.


Langmuir | 2015

Preparation of a Three-Dimensional Reduced Graphene Oxide Film by Using the Langmuir–Blodgett Method

M. Musoddiq Jaafar; Gustavo P. M. K. Ciniciato; S. Aisyah Ibrahim; Siew-Moi Phang; Kamran Yunus; Adrian C. Fisher; M. Iwamoto; Periasamy Vengadesh

The Langmuir-Blodgett method has always been traditionally utilized in the deposition of two-dimensional structures. In this work, however, we employed the method to deposit three-dimensional reduced graphene oxide layers using an unconventional protocol for the first time. This was achieved by carrying out the dipping process after the collapse pressure or breaking point, which results in the formation of a highly porous three-dimensional surface topography. By varying the number of deposition layers, the porosity could be optimized from nanometer to micrometer dimensions. Employed as bioelectrodes, these three-dimensional reduced graphene oxide layers may allow improved adhesion and biocompatibility compared to the conventional two-dimensional surfaces. A larger number of pores also improves the mass transport of materials and therefore increases the charge-sustaining capacity and sensitivity. This could ultimately improve the performance of biofuel cells and other electrode-based systems.


Scientific Reports | 2015

Reduced Graphene Oxide Anodes for Potential Application in Algae Biophotovoltaic Platforms

Fong-Lee Ng; Muhammad Musoddiq Jaafar; Siew-Moi Phang; Zhijian Chan; Nurul Anati Salleh; Siti Zulfikriyah Azmi; Kamran Yunus; Adrian C. Fisher; Vengadesh Periasamy

The search for renewable energy sources has become challenging in the current era, as conventional fuel sources are of finite origins. Recent research interest has focused on various biophotovoltaic (BPV) platforms utilizing algae, which are then used to harvest solar energy and generate electrical power. The majority of BPV platforms incorporate indium tin oxide (ITO) anodes for the purpose of charge transfer due to its inherent optical and electrical properties. However, other materials such as reduced graphene oxide (RGO) could provide higher efficiency due to their intrinsic electrical properties and biological compatibility. In this work, the performance of algae biofilms grown on RGO and ITO anodes were measured and discussed. Results indicate improved peak power of 0.1481 mWm−2 using the RGO electrode and an increase in efficiency of 119%, illustrating the potential of RGO as an anode material for applications in biofilm derived devices and systems.


PLOS ONE | 2014

Evaluation of Algal Biofilms on Indium Tin Oxide (ITO) for Use in Biophotovoltaic Platforms Based on Photosynthetic Performance

Fong-Lee Ng; Siew-Moi Phang; Vengadesh Periasamy; Kamran Yunus; Adrian C. Fisher

In photosynthesis, a very small amount of the solar energy absorbed is transformed into chemical energy, while the rest is wasted as heat and fluorescence. This excess energy can be harvested through biophotovoltaic platforms to generate electrical energy. In this study, algal biofilms formed on ITO anodes were investigated for use in the algal biophotovoltaic platforms. Sixteen algal strains, comprising local isolates and two diatoms obtained from the Culture Collection of Marine Phytoplankton (CCMP), USA, were screened and eight were selected based on the growth rate, biochemical composition and photosynthesis performance using suspension cultures. Differences in biofilm formation between the eight algal strains as well as their rapid light curve (RLC) generated using a pulse amplitude modulation (PAM) fluorometer, were examined. The RLC provides detailed information on the saturation characteristics of electron transport and overall photosynthetic performance of the algae. Four algal strains, belonging to the Cyanophyta (Cyanobacteria) Synechococcus elongatus (UMACC 105), Spirulina platensis. (UMACC 159) and the Chlorophyta Chlorella vulgaris (UMACC 051), and Chlorella sp. (UMACC 313) were finally selected for investigation using biophotovoltaic platforms. Based on power output per Chl-a content, the algae can be ranked as follows: Synechococcus elongatus (UMACC 105) (6.38×10−5 Wm−2/µgChl-a)>Chlorella vulgaris UMACC 051 (2.24×10−5 Wm−2/µgChl-a)>Chlorella sp.(UMACC 313) (1.43×10−5 Wm−2/µgChl-a)>Spirulina platensis (UMACC 159) (4.90×10−6 Wm−2/µgChl-a). Our study showed that local algal strains have potential for use in biophotovoltaic platforms due to their high photosynthetic performance, ability to produce biofilm and generation of electrical power.


European Biophysics Journal | 2007

Refolding of a membrane protein in a microfluidics reactor

Nathan R. Zaccai; Kamran Yunus; Sinéad M. Matthews; Adrian C. Fisher; Robert J. Falconer

Membrane protein production for structural studies is often hindered by the formation of non-specific aggregates from which the protein has to be denatured and then refolded to a functional state. We developed a new approach, which uses microfluidics channels, to refold protein correctly in quantities sufficient for structural studies. Green fluorescent protein (GFP), a soluble protein, and bacteriorhodopsin (BR), a transmembrane protein, were used to demonstrate the efficiency of the process. Urea-denatured GFP refolded as the urea diffused away from the protein, forming in the channel a uniform fluorescent band when observed by confocal microscopy. Sodium dodecyl sulphate-denatured BR refolded within the channel on mixing with detergent–lipid mixed micelles. The refolding, monitored by absorbance spectroscopy, was found to be flow rate dependent. This potential of microfluidic reactors for screening protein-folding conditions and producing protein would be particularly amenable for high-throughput applications required in structural genomics.


New Biotechnology | 2012

In situ fabrication of a microfluidic device for immobilised metal affinity sensing.

Abhishek G. Deshpande; Nicholas J. Darton; Kamran Yunus; Adrian C. Fisher; Nigel K.H. Slater

In this work a novel microfluidic device was constructed in situ containing the smallest microscopic co-polymeric immobilised metal affinity (IMA) adsorbent yet documented. This device has for the first time allowed the microlitre scale chromatographic assay of histidine-tagged proteins in a biological sample. To enable this approach, rather than using a high capacity commercial packed bed column which requires large sample volumes and would be susceptible to occlusion by cell debris, a microgram capacity co-polymeric chromatographic substrate suitable for analytical applications was fabricated within a microfluidic channel. This porous co-polymeric IMA micro-chromatographic element, only 27μl in volume, was assessed for the analytical capture of two different histidine-tagged recombinant fusion proteins. The micro-chromatographic adsorber was fabricated in situ by photo-polymerising an iminodiacetic acid (IDA) functionalised polymer matrix around a template of fused 100μm diameter NH(4)Cl particles entirely within the microfluidic channel and then etching away the salt with water to form a network of interconnected voids. The surface of the micro-chromatographic adsorber was chemically functionalised with a chelating agent and loaded with Cu(2+) ions. FTIR and NMR analysis verified the presence of the chelating agent on the adsorbent surface and its Cu(2+) ion binding capacity was determined to be 2.4μmol Cu(2+) (ml of adsorbent)(-1). Micro-scale equilibrium adsorption studies using the two different histidine-tagged proteins, LacI-His(6)-GFP and α-Synuclein-His(8)-YFP, were carried out and the protein binding capacity of the adsorbent was determined to be 0.370 and 0.802mg(g of adsorbent)(-1), respectively. The dynamic binding capacity was determined at four different flow rates and found to be comparable to the equilibrium binding capacity at low flow rates. The sensing platform was also used to adsorb LacI-His(6)-GFP protein from crude cell lysate. During adsorption, laser scanning confocal microscopy identified locations within the adsorbent where protein adsorption and desorption occurred. The findings indicate that minimal channelling, selective product capture and near quantitative elution of the captured (adsorbed) product could be achieved, supporting the application of this new device as a high-throughput process analytical tool (PAT) for the in-process monitoring of histidine-tagged proteins in manufacturing.


Scientific Reports | 2017

Enhancement of Power Output by using Alginate Immobilized Algae in Biophotovoltaic Devices

Fong-Lee Ng; Siew-Moi Phang; Vengadesh Periasamy; Kamran Yunus; Adrian C. Fisher

We report for the first time a photosynthetically active algae immobilized in alginate gel within a fuel cell design for generation of bioelectricity. The algal-alginate biofilm was utilized within a biophotovoltaics (BPV) device developed for direct bioelectricity generation from photosynthesis. A peak power output of 0.289 mWm−2 with an increase of 18% in power output compared to conventional suspension culture BPV device was observed. The increase in maximum power density was correlated to the maximum relative electron transport rate (rETRm). The semi-dry type of photosynthetically active biofilm proposed in this work may offer significantly improved performances in terms of fuel cell design, bioelectricity generation, oxygen production and CO2 reduction.


RSC Advances | 2015

Capillary force assisted fabrication of DNA templated silver wires

P. Vengadesh; Gustavo P. M. K. Ciniciato; C. Zhijian; M. Musoddiq; Adrian C. Fisher; Kamran Yunus

We demonstrate for the first time the formation of micron scale conductive silver (Ag) wires induced by capillary forces through scribed micro-cuts on a deoxyribonucleic acid–silver nanoparticle (DNA–AgNPs) film. The “writing” flexibility based on the physical re-arrangement of the particles may prove to be prominent towards the fabrication of conductive wires.

Collaboration


Dive into the Kamran Yunus's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yunfeng Gu

University of Cambridge

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge