Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kan Huang is active.

Publication


Featured researches published by Kan Huang.


Journal of Geophysical Research | 2010

Mixing of Asian dust with pollution aerosol and the transformation of aerosol components during the dust storm over China in spring 2007

Kan Huang; Guoshun Zhuang; Juan Li; Qiongzhen Wang; Yele Sun; Yanfen Lin; Joshua S. Fu

NO3 and NH4 decreased owing to the dilution of the local pollution by the invaded dust. The western dust contained relatively low anthropogenic aerosols, and it mainly derived from the Taklimakan Desert, a paleomarine source. The northwestern dust had a considerable chemical reactivity and mixing with sulfur precursors emitted from the coal mines on the pathway of the long‐range transport of dust. The northeastern dust reached Shanghai with high acidity, and it became the mixed aerosol with the interaction among dust, local pollutants, and sea salts. Comparison of the speciation of the water‐soluble ions on both nondust and dust days at all sites illustrated the evolution of major ion species from different dust sources during the long‐range transport of dust. The mixing mechanisms of the dust with the pollution aerosol on the local, medium‐range, and long‐range scale revealed from this study would improve the understanding of the impacts of Asian dust on the regional/global climate change.


Journal of Geophysical Research | 2015

Russian anthropogenic black carbon: Emission reconstruction and Arctic black carbon simulation

Kan Huang; Joshua S. Fu; Vitaly Y. Prikhodko; John M. E. Storey; Alexander Romanov; E. L. Hodson; Joe Cresko; Irina Morozova; Yulia Ignatieva; John Cabaniss

Development of reliable source emission inventories is particularly needed to advance the understanding of the origin of Arctic haze using chemical transport modeling. This study develops a regional anthropogenic black carbon (BC) emission inventory for the Russian Federation, the largest country by land area in the Arctic Council. Activity data from combination of local Russia information and international resources, emission factors based on either Russian documents or adjusted values for local conditions, and other emission source data are used to approximate the BC emissions. Emissions are gridded at a resolution of 0.1° × 0.1° and developed into a monthly temporal profile. Total anthropogenic BC emission of Russia in 2010 is estimated to be around 224 Gg. Gas flaring, a commonly ignored black carbon source, contributes a significant fraction of 36.2% to Russias total anthropogenic BC emissions. Other sectors, i.e., residential, transportation, industry, and power plants, contribute 25.0%, 20.3%, 13.1%, and 5.4%, respectively. Three major BC hot spot regions are identified: the European part of Russia, the southern central part of Russia where human population densities are relatively high, and the Urals Federal District where Russias major oil and gas fields are located but with sparse human population. BC simulations are conducted using the hemispheric version of Community Multi-scale Air Quality Model with emission inputs from a global emission database EDGAR (Emissions Database for Global Atmospheric Research)-HTAPv2 (Hemispheric Transport of Air Pollution) and EDGAR-HTAPv2 with its Russian part replaced by the newly developed Russian BC emissions, respectively. The simulation using the new Russian BC emission inventory could improve 30–65% of absorption aerosol optical depth measured at the AERONET sites in Russia throughout the whole year as compared to that using the default HTAPv2 emissions. At the four ground monitoring sites (Zeppelin, Barrow, Alert, and Tiksi) in the Arctic Circle, surface BC simulations are improved the most during the Arctic haze periods (October–March). The poor performance of Arctic BC simulations in previous studies may be partly ascribed to the Russian BC emissions built on out-of-date and/or missing information, which could result in biases to both emission rates and the spatial distribution of emissions. This study highlights that the impact of Russian emissions on the Arctic haze has likely been underestimated, and its role in the Arctic climate system needs to be reassessed. The Russian black carbon emission source data generated in this study can be obtained via http://abci.ornl.gov/download.shtml or http://acs.engr.utk.edu/Data.php.


Science of The Total Environment | 2011

Mixing of dust with pollution on the transport path of Asian dust — Revealed from the aerosol over Yulin, the north edge of Loess Plateau

Qiongzhen Wang; Guoshun Zhuang; Juan Li; Kan Huang; Rong Zhang; Yilun Jiang; Yanfen Lin; Joshua S. Fu

Both PM(2.5) and TSP were monitored in the spring from 2006 to 2008 in an intensive ground monitoring network of five sites (Tazhong, Yulin, Duolun, Beijing, and Shanghai) along the pathway of Asian dust storm across China to investigate the mixing of dust with pollution on the pathway of the long-range transport of Asian dust. Mineral was found to be the most loading component of aerosols both in dust event days and non-dust days. The concentrations of those pollution elements, As, Cd, Pb, Zn, and S in aerosol were much higher than their mean abundances in the crust even in dust event days. The high concentration of SO(4)(2-) could be from both sources: one from the transformation of the local emitted SO(2) and the other from the sulfate that existed in primary dust, which was transported to Yulin. Na(+), Ca(2+), and Mg(2+) were mainly from the crustal source, while NO(3)(-) and NH(4)(+) were from the local pollution sources. The mixing of dust with pollution aerosol over Yulin in dust event day was found to be ubiquitous, and the mixing extent could be expressed by the ratio of NO(3)(-)/Al in dust aerosol. The ratio of Ca/Al was used as a tracer to study the dust source. The comparison of the ratios of Ca/Al together with back trajectory analysis indicated that the sources of the dust aerosol that invaded Yulin could be from the northwestern desert in China and Mongolia Gobi.


Science of The Total Environment | 2014

Inorganic aerosols responses to emission changes in Yangtze River Delta, China

Xinyi Dong; Juan Li; Joshua S. Fu; Yang Gao; Kan Huang; Guoshun Zhuang

The new Chinese National Ambient Air Quality standards (CH-NAAQS) published on Feb. 29th, 2012 listed PM2.5 as criteria pollutant for the very first time. In order to probe into PM2.5 pollution over Yangtze River Delta, the integrated MM5/CMAQ modeling system is applied for a full year simulation to examine the PM2.5 concentration and seasonality, and also the inorganic aerosols responses to precursor emission changes. Total PM2.5 concentration over YRD was found to have strong seasonal variation with higher values in winter months (up to 89.9 μg/m(3) in January) and lower values in summer months (down to 28.8 μg/m(3) in July). Inorganic aerosols were found to have substantial contribution to PM2.5 over YRD, ranging from 37.1% in November to 52.8% in May. Nocturnal production of nitrate (NO3(-)) through heterogeneous hydrolysis of N2O5 was found significantly contribute to high NO3(-) concentration throughout the year. In winter, NO3(-) was found to increase under nitrogen oxides (NOx) emission reduction due to higher production of N2O5 from the excessive ozone (O3) introduced by attenuated titration, which further lead to increase of ammonium (NH4(+)) and sulfate (SO4(2-)), while other seasons showed decrease response of NO3(-). Sensitivity responses of NO3(-) under anthropogenic VOC emission reduction was examined and demonstrated that in urban areas over YRD, NO3(-) formation was actually more sensitive to VOC than NOx due to the O3-involved nighttime chemistry of N2O5, while a reduction of NOx emission may have counter-intuitive effect by increasing concentrations of inorganic aerosols.


Journal of The Air & Waste Management Association | 2015

Estimation of future PM2.5- and ozone-related mortality over the continental United States in a changing climate: An application of high-resolution dynamical downscaling technique

Jian Sun; Joshua S. Fu; Kan Huang; Yang Gao

This paper evaluates the PM2.5- and ozone-related mortality at present (2000s) and in the future (2050s) over the continental United States by using the Environmental Benefits Mapping and Analysis Program (BenMAP-CE). Atmospheric chemical fields are simulated by WRF/CMAQ (horizontal resolution: 12 × 12km), applying the dynamical downscaling technique from global climate-chemistry model under the Representative Concentration Pathways scenario (RCP 8.5). Future air quality results predict that the annual mean PM2.5 concentration in continental U.S. decreases nationwide, especially in the Eastern U.S. and west coast. However, the ozone concentration is projected to decrease in the Eastern U.S. but increase in the Western U.S. Future mortality is evaluated under two scenarios (1) holding future population and baseline incidence rate at the present level and (2) using the projected baseline incidence rate and population in 2050. For PM2.5, the entire continental U.S. presents a decreasing trend of PM2.5-related mortality by the 2050s in Scenario (1), primarily resulting from the emissions reduction. While in Scenario (2), almost half of the continental states show a rising tendency of PM2.5-related mortality, due to the dominant influence of population growth. In particular, the highest PM2.5-related deaths and the biggest discrepancy between present and future PM2.5-related deaths both occur in California in 2050s. For the ozone-related premature mortality, the simulation shows nation-wide rising tendency in 2050s under both scenarios, mainly due to the increase of ozone concentration and population in the future. Furthermore, the uncertainty analysis shows that the confidence interval of all causes mortality is much larger than that for specific causes, probably due to the accumulated uncertainty of generating datasets and sample size. The confidence interval of ozone-related all cause premature mortality is narrower than the PM2.5-related all cause mortality, due to its smaller standard deviation of the concentration-mortality response factor. Implications: The health impact of PM2.5 is more linearly proportional to the emission reductions than ozone. The reduction of anthropogenic PM2.5 precursor emissions is likely to lead to the decrease of PM2.5 concentrations and PM2.5 related mortality. However, the future ozone concentrations could increase due to increase of the greenhouse gas emissions of methane. Thus, to reduce the impact of ozone related mortality, anthropogenic emissions including criteria pollutant and greenhouse gas (i.e. methane) need to be controlled.


Scientific Data | 2016

A global gas flaring black carbon emission rate dataset from 1994 to 2012

Kan Huang; Joshua S. Fu

Global flaring of associated petroleum gas is a potential emission source of particulate matters (PM) and could be notable in some specific regions that are in urgent need of mitigation. PM emitted from gas flaring is mainly in the form of black carbon (BC), which is a strong short-lived climate forcer. However, BC from gas flaring has been neglected in most global/regional emission inventories and is rarely considered in climate modeling. Here we present a global gas flaring BC emission rate dataset for the period 1994–2012 in a machine-readable format. We develop a region-dependent gas flaring BC emission factor database based on the chemical compositions of associated petroleum gas at various oil fields. Gas flaring BC emission rates are estimated using this emission factor database and flaring volumes retrieved from satellite imagery. Evaluation using a chemical transport model suggests that consideration of gas flaring emissions can improve model performance. This dataset will benefit and inform a broad range of research topics, e.g., carbon budget, air quality/climate modeling, and environmental/human exposure.


Proceedings of the National Academy of Sciences of the United States of America | 2016

Organic nitrates and other oxidized nitrogen compounds contribute significantly to the total nitrogen depositions in the United States

Jian Sun; Joshua S. Fu; Kan Huang

It is well recognized that the NOX (NO + NO2) emission has been reduced steadily in the United States, but NH3 emission is increasing strongly without regulation. Li et al. (1) estimate the NH3 dry deposition by using the multilayer model (MLM) and bidirectional approaches, and conclude that the control policy for NOX emission has now shifted the total (wet + dry) nitrogen deposition in the United States from the oxidized nitrogen-dominated to the reduced nitrogen-dominated pattern. The authors further conclude that the NH3 dry deposition alone could contribute more than 50% to the total nitrogen deposition in some regions in the United States. Although Li et al. (1) mention the effect of organic nitrogen compounds, they do not include it in their study. Previous studies … [↵][1]1To whom correspondence should be addressed. Email: jsfu{at}utk.edu. [1]: #xref-corresp-1-1


Earth’s Future | 2017

Climate‐driven exceedance of total (wet + dry) nitrogen (N) + sulfur (S) deposition to forest soil over the conterminous U.S

Jian Sun; Joshua S. Fu; Jason A. Lynch; Kan Huang; Yang Gao

Nitrogen (N) and sulfur (S) deposition are much mitigated over the conterminous US (CONUS) but deposition exceedance still exists on forest soil. In addition, the empirical approach is usually used but only provides a spatially constant critical load (CL). Therefore, the CL derived from steady-state mass balance equation is used to study the CL exceedance on forest soil over the CONUS. The multi-model mean (MMM) of global climate-chemistry models in 2000s indicates that total (wet + dry) N deposition alone over 10.32% of forest soil exceeds the CL, but a higher percent (30.16%) is observed by the N + S deposition, which highlights the necessity of considering S deposition. In 2050s, less CL exceeded forest soil is projected and the exceedance amount is lower as well, mainly attributed to the strong reduction of projected NOX and SO2 emissions. By firstly projecting the future CL due to the climate change, the CL exceedance could further decrease since the air temperature is projected to increase rapidly and lead to higher CL in the future. The CL exceedance by N deposition alone is likely to be dominated by NOy in 2000s but NHX in 2050s because of the enhanced NH3 emission. Moreover, both in 2000s and 2050s, using the CL generated by different aggregation methods can cause up to 33 times difference between the corresponding CL exceedance. This suggests that several regions are under the marginal threat of either N or N + S deposition and different CL can influence the results significantly.


Scientific Reports | 2018

First long-term detection of paleo-oceanic signature of dust aerosol at the southern marginal area of the Taklimakan Desert

Qi Zhou; Juan Li; Jian Xu; Xiaofei Qin; Congrui Deng; Joshua S. Fu; Qiongzhen Wang; Mijiti Yiming; Kan Huang; Guoshun Zhuang

We firstly conducted a long-term in-situ field measurement at a marginal area (Hotan) of the southern Taklimakan Desert covering all four seasons. Detailed chemical characterization of dust aerosol over Hotan showed several unconventional features, including (1) ubiquity of high Na+ and Cl− abundances in the Taklimakan dust aerosol and its Cl−/Na+ ratio close to seawater; (2) high Ca content in the Taklimakan dust (7.4~8.0%) which was about two times of that in the natural crust; (3) high abundance of soluble sulfate concentrations and strong correlations between sulfate and Na+ and Cl− as well as typical mineral tracers such as Al and Ca. Our results collectively indicated that the dust aerosol from the Taklimakan Desert was characterized of evident paelo-oceanic signature as the Taklimakan Desert was found as an ocean in the ancient times from the perspective of paleogeology. It was estimated that primary sources dominated the total abundances of sulfate during the dust seasons while previous climate modeling works had seldom considered the cooling effects of sulfate from the Taklimakan Desert.


Scientific Reports | 2018

Analysis of the Co-existence of Long-range Transport Biomass Burning and Dust in the Subtropical West Pacific Region

Xinyi Dong; Joshua S. Fu; Kan Huang; Neng-Huei Lin; Sheng-Hsiang Wang; Cheng-En Yang

Biomass burning and wind-blown dust has been well investigated during the past decade regarding their impacts on environment, but their co-existence hasn’t been recognized because they usually occur in different locations and episodes. In this study we reveal the unique co-existence condition that dust from the Taklamakan and Gobi Desert (TGD) and biomass burning from Peninsular Southeast Asia (PSEA) can reach to the west Pacific region simultaneously in boreal spring (March and April). The upper level trough at 700hPa along east coast of China favors the large scale subsidence of TGD dust while it travels southeastwards, and drives the PSEA biomass burning plume carried by the westerlies at 3–5 km to descend rapidly to around 1.5 km and mix with dust around southeast China and Taiwan. As compared to the monthly averages in March and April, surface observations suggested that concentrations of PM10, PM2.5, O3, and CO were 69%, 37%, 20%, and 18% higher respectively during the 10 identified co-existence events which usually lasted for 2–3 days. Co-existence also lowers the surface O3, NOx, and SO2 by 4–5% due to the heterogeneous chemistry between biomass burning and mineral dust as indicated by model simulations.

Collaboration


Dive into the Kan Huang's collaboration.

Top Co-Authors

Avatar

Joshua S. Fu

University of Tennessee

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Xinyi Dong

University of Tennessee

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yang Gao

Ocean University of China

View shared research outputs
Researchain Logo
Decentralizing Knowledge