Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kana Miyamoto is active.

Publication


Featured researches published by Kana Miyamoto.


Nature Medicine | 2006

Reactive oxygen species act through p38 MAPK to limit the lifespan of hematopoietic stem cells

Keisuke Ito; Atsushi Hirao; Fumio Arai; Keiyo Takubo; Sahoko Matsuoka; Kana Miyamoto; Masako Ohmura; Kazuhito Naka; Kentaro Hosokawa; Yasuo Ikeda; Toshio Suda

Hematopoietic stem cells (HSCs) undergo self-renewing cell divisions and maintain blood production for their lifetime. Appropriate control of HSC self-renewal is crucial for the maintenance of hematopoietic homeostasis. Here we show that activation of p38 MAPK in response to increasing levels of reactive oxygen species (ROS) limits the lifespan of HSCs in vivo. In Atm−/− mice, elevation of ROS levels induces HSC-specific phosphorylation of p38 MAPK accompanied by a defect in the maintenance of HSC quiescence. Inhibition of p38 MAPK rescued ROS-induced defects in HSC repopulating capacity and in the maintenance of HSC quiescence, indicating that the ROS–p38 MAPK pathway contributes to exhaustion of the stem cell population. Furthermore, prolonged treatment with an antioxidant or an inhibitor of p38 MAPK extended the lifespan of HSCs from wild-type mice in serial transplantation experiments. These data show that inactivation of p38 MAPK protects HSCs against loss of self-renewal capacity. Our characterization of molecular mechanisms that limit HSC lifespan may lead to beneficial therapies for human disease.


Cell Stem Cell | 2007

Foxo3a Is Essential for Maintenance of the Hematopoietic Stem Cell Pool

Kana Miyamoto; Kiyomi Y. Araki; Kazuhito Naka; Fumio Arai; Keiyo Takubo; Satoshi Yamazaki; Sahoko Matsuoka; Takeshi Miyamoto; Keisuke Ito; Masako Ohmura; Chen Chen; Kentaro Hosokawa; Hiromitsu Nakauchi; Keiko Nakayama; Keiichi I. Nakayama; Mine Harada; Noboru Motoyama; Toshio Suda; Atsushi Hirao

Hematopoietic stem cells (HSCs) are maintained in an undifferentiated quiescent state within a bone marrow niche. Here we show that Foxo3a, a forkhead transcription factor that acts downstream of the PTEN/PI3K/Akt pathway, is critical for HSC self-renewal. We generated gene-targeted Foxo3a(-/-) mice and showed that, although the proliferation and differentiation of Foxo3a(-/-) hematopoietic progenitors were normal, the number of colony-forming cells present in long-term cocultures of Foxo3a(-/-) bone marrow cells and stromal cells was reduced. The ability of Foxo3a(-/-) HSCs to support long-term reconstitution of hematopoiesis in a competitive transplantation assay was also impaired. Foxo3a(-/-) HSCs also showed increased phosphorylation of p38MAPK, an elevation of ROS, defective maintenance of quiescence, and heightened sensitivity to cell-cycle-specific myelotoxic injury. Finally, HSC frequencies were significantly decreased in aged Foxo3a(-/-) mice compared to the littermate controls. Our results demonstrate that Foxo3a plays a pivotal role in maintaining the HSC pool.


Cell Stem Cell | 2007

Thrombopoietin/MPL Signaling Regulates Hematopoietic Stem Cell Quiescence and Interaction with the Osteoblastic Niche

Hiroki Yoshihara; Fumio Arai; Kentaro Hosokawa; Tetsuya Hagiwara; Keiyo Takubo; Yuka Nakamura; Yumiko Gomei; Hiroko Iwasaki; Sahoko Matsuoka; Kana Miyamoto; Hiroshi Miyazaki; Takao Takahashi; Toshio Suda

Maintenance of hematopoietic stem cells (HSCs) depends on interaction with their niche. Here we show that the long-term (LT)-HSCs expressing the thrombopoietin (THPO) receptor, MPL, are a quiescent population in adult bone marrow (BM) and are closely associated with THPO-producing osteoblastic cells. THPO/MPL signaling upregulated beta1-integrin and cyclin-dependent kinase inhibitors in HSCs. Furthermore, inhibition and stimulation of THPO/MPL pathway by treatments with anti-MPL neutralizing antibody, AMM2, and with THPO showed reciprocal regulation of quiescence of LT-HSC. AMM2 treatment reduced the number of quiescent LT-HSCs and allowed exogenous HSC engraftment without irradiation. By contrast, exogenous THPO transiently increased quiescent HSC population and subsequently induced HSC proliferation in vivo. Altogether, these observations suggest that THPO/MPL signaling plays a critical role of LT-HSC regulation in the osteoblastic niche.


Journal of Experimental Medicine | 2010

The Blimp1–Bcl6 axis is critical to regulate osteoclast differentiation and bone homeostasis

Yoshiteru Miyauchi; Ken Ninomiya; Hiroya Miyamoto; Akemi Sakamoto; Ryotaro Iwasaki; Hiroko Hoshi; Kana Miyamoto; Wu Hao; Shigeyuki Yoshida; Hideo Morioka; Kazuhiro Chiba; Shigeaki Kato; Takeshi Tokuhisa; Mitinori Saitou; Yoshiaki Toyama; Toshio Suda; Takeshi Miyamoto

Controlling osteoclastogenesis is critical to maintain physiological bone homeostasis and prevent skeletal disorders. Although signaling activating nuclear factor of activated T cells 1 (NFATc1), a transcription factor essential for osteoclastogenesis, has been intensively investigated, factors antagonistic to NFATc1 in osteoclasts have not been characterized. Here, we describe a novel pathway that maintains bone homeostasis via two transcriptional repressors, B cell lymphoma 6 (Bcl6) and B lymphocyte–induced maturation protein-1 (Blimp1). We show that Bcl6 directly targets ‘osteoclastic’ molecules such as NFATc1, cathepsin K, and dendritic cell-specific transmembrane protein (DC-STAMP), all of which are targets of NFATc1. Bcl6-overexpression inhibited osteoclastogenesis in vitro, whereas Bcl6-deficient mice showed accelerated osteoclast differentiation and severe osteoporosis. We report that Bcl6 is a direct target of Blimp1 and that mice lacking Blimp1 in osteoclasts exhibit osteopetrosis caused by impaired osteoclastogenesis resulting from Bcl6 up-regulation. Indeed, mice doubly mutant in Blimp1 and Bcl6 in osteoclasts exhibited decreased bone mass with increased osteoclastogenesis relative to osteoclast-specific Blimp1-deficient mice. These results reveal a Blimp1–Bcl6–osteoclastic molecule axis, which critically regulates bone homeostasis by controlling osteoclastogenesis and may provide a molecular basis for novel therapeutic strategies.


Journal of Experimental Medicine | 2007

Reactive oxygen species induce chondrocyte hypertrophy in endochondral ossification

Kozo Morita; Takeshi Miyamoto; Nobuyuki Fujita; Yoshiaki Kubota; Keisuke Ito; Keiyo Takubo; Kana Miyamoto; Ken Ninomiya; Toru Suzuki; Ryotaro Iwasaki; Mitsuru Yagi; Hironari Takaishi; Yoshiaki Toyama; Toshio Suda

Chondrocyte hypertrophy during endochondral ossification is a well-controlled process in which proliferating chondrocytes stop proliferating and differentiate into hypertrophic chondrocytes, which then undergo apoptosis. Chondrocyte hypertrophy induces angiogenesis and mineralization. This step is crucial for the longitudinal growth and development of long bones, but what triggers the process is unknown. Reactive oxygen species (ROS) have been implicated in cellular damage; however, the physiological role of ROS in chondrogenesis is not well characterized. We demonstrate that increasing ROS levels induce chondrocyte hypertrophy. Elevated ROS levels are detected in hypertrophic chondrocytes. In vivo and in vitro treatment with N-acetyl cysteine, which enhances endogenous antioxidant levels and protects cells from oxidative stress, inhibits chondrocyte hypertrophy. In ataxia telangiectasia mutated (Atm)–deficient (Atm−/−) mice, ROS levels were elevated in chondrocytes of growth plates, accompanied by a proliferation defect and stimulation of chondrocyte hypertrophy. Decreased proliferation and excessive hypertrophy in Atm−/− mice were also rescued by antioxidant treatment. These findings indicate that ROS levels regulate inhibition of proliferation and modulate initiation of the hypertrophic changes in chondrocytes.


Journal of Experimental Medicine | 2011

Osteoclasts are dispensable for hematopoietic stem cell maintenance and mobilization

Kana Miyamoto; Shigeyuki Yoshida; Miyuri Kawasumi; Kazuaki Hashimoto; Tokuhiro Kimura; Yuiko Sato; Tami Kobayashi; Yoshiteru Miyauchi; Hiroko Hoshi; Ryotaro Iwasaki; Hiroya Miyamoto; Wu Hao; Hideo Morioka; Kazuhiro Chiba; Takashi Kobayashi; Hisataka Yasuda; Josef M. Penninger; Yoshiaki Toyama; Toshio Suda; Takeshi Miyamoto

The mobilization of hematopoietic stem cells does not require osteoclasts, which may even have an inhibitory effect.


Journal of Immunology | 2007

Regulation of Reactive Oxygen Species by Atm Is Essential for Proper Response to DNA Double-Strand Breaks in Lymphocytes

Keisuke Ito; Keiyo Takubo; Fumio Arai; Hitoshi Satoh; Sahoko Matsuoka; Masako Ohmura; Kazuhito Naka; Masaki Azuma; Kana Miyamoto; Kentaro Hosokawa; Yasuo Ikeda; Tak W. Mak; Toshio Suda; Atsushi Hirao

The ataxia telangiectasia-mutated (ATM) gene plays a pivotal role in the maintenance of genomic stability. Although it has been recently shown that antioxidative agents inhibited lymphomagenesis in Atm−/− mice, the mechanisms remain unclear. In this study, we intensively investigated the roles of reactive oxygen species (ROS) in phenotypes of Atm−/− mice. Reduction of ROS by the antioxidant N-acetyl-l-cysteine (NAC) prevented the emergence of senescent phenotypes in Atm−/− mouse embryonic fibroblasts, hypersensitivity to total body irradiation, and thymic lymphomagenesis in Atm−/− mice. To understand the mechanisms for prevention of lymphomagenesis, we analyzed development of pretumor lymphocytes in Atm−/− mice. Impairment of Ig class switch recombination seen in Atm−/− mice was mitigated by NAC, indicating that ROS elevation leads to abnormal response to programmed double-strand breaks in vivo. Significantly, in vivo administration of NAC to Atm−/− mice restored normal T cell development and inhibited aberrant V(D)J recombination. We conclude that Atm-mediated ROS regulation is essential for proper DNA recombination, preventing immunodeficiency, and lymphomagenesis.


Journal of Bone and Mineral Research | 2012

Osteoclast stimulatory transmembrane protein and dendritic cell–specific transmembrane protein cooperatively modulate cell–cell fusion to form osteoclasts and foreign body giant cells

Hiroya Miyamoto; Takayuki Suzuki; Yoshiteru Miyauchi; Ryotaro Iwasaki; Tami Kobayashi; Yuiko Sato; Kana Miyamoto; Hiroko Hoshi; Kazuaki Hashimoto; Shigeyuki Yoshida; Wu Hao; Tomoaki Mori; Hiroya Kanagawa; Eri Katsuyama; Atsuhiro Fujie; Hideo Morioka; Morio Matsumoto; Kazuhiro Chiba; Motohiro Takeya; Yoshiaki Toyama; Takeshi Miyamoto

Cell–cell fusion is a dynamic phenomenon promoting cytoskeletal reorganization and phenotypic changes. To characterize factors essential for fusion of macrophage lineage cells, we identified the multitransmembrane protein, osteoclast stimulatory transmembrane protein (OC‐STAMP), and analyzed its function. OC‐STAMP–deficient mice exhibited a complete lack of cell–cell fusion of osteoclasts and foreign body giant cells (FBGCs), both of which are macrophage‐lineage multinuclear cells, although expression of dendritic cell specific transmembrane protein (DC‐STAMP), which is also essential for osteoclast/FBGC fusion, was normal. Crossing OC‐STAMP–overexpressing transgenic mice with OC‐STAMP–deficient mice restored inhibited osteoclast and FBGC cell–cell fusion seen in OC‐STAMP–deficient mice. Thus, fusogenic mechanisms in macrophage‐lineage cells are regulated via OC‐STAMP and DC‐STAMP.


Blood | 2008

FoxO3a regulates hematopoietic homeostasis through a negative feedback pathway in conditions of stress or aging

Kana Miyamoto; Takeshi Miyamoto; Reiko Kato; Akihiko Yoshimura; Noboru Motoyama; Toshio Suda

Stress or aging of tissue-specific stem cells is considered central to the decline of tissue homeostasis in the elderly, although little is known of molecular mechanisms underlying hematopoietic stem cell (HSC) aging and stress resistance. Here, we report that mice lacking the transcription factor forkhead box O3a (FoxO3a) develop neutrophilia associated with inhibition of the up-regulation of negative regulator of cell proliferation, Sprouty-related Ena/VASP homology 1 domain-containing proteins 2 (Spred2) and AKT and ERK activation, in HSCs during hematopoietic recovery following myelosuppressive stress conditions. Compared with aged wild-type mice, more severe neutrophilia was also observed in aged Foxo3a-deficient mice. AKT and ERK activation and inhibition of Spred2 were detected in HSCs from aged FoxO3a-deficient mice. Spred2-deficient mice also developed neutrophilia during hematopoietic recovery following myelosuppressive stress, indicating that FoxO3a plays a pivotal role in maintenance, integrity, and stress resistance of HSCs through negative feedback pathways for proliferation. This will provide new insight into the hematopoietic homeostasis in conditions of aging and stress.


Biochemical and Biophysical Research Communications | 2008

Vascular endothelial growth factor-A is a survival factor for nucleus pulposus cells in the intervertebral disc

Nobuyuki Fujita; Jun-ichi Imai; Toru Suzuki; Masayuki Yamada; Ken Ninomiya; Kana Miyamoto; Ryotaro Iwasaki; Hideo Morioka; Morio Matsumoto; Kazuhiro Chiba; Shinya Watanabe; Toshio Suda; Yoshiaki Toyama; Takeshi Miyamoto

The intervertebral disc (IVD) is composed of two avascular tissue types, the nucleus pulposus (NP) and the annulus fibrosus (AF). IVDs is the largest avascular tissue in the human body, however, how these tissues are maintained without a blood supply is poorly understood. Here we show that vascular endothelial growth factor-A (VEGF-A) is highly expressed in NP and that VEGF-A plays a role in NP survival. High VEGF-A expression in NP was detected by microarray analysis, and NP was positive for the hypoxic probe pimonidazole and hypoxia-responsive genes. VEGF-A expression in NP was promoted by hypoxic conditions in vitro. NP cells also expressed the membrane-bound VEGF receptor-1 (VEGFR-1), and the number of apoptotic cells in cultured cell model of NP increased following treatment with VEGFR-1-Fc, which traps VEGF-A in NP. These results indicate that NP is a hypoxic tissue, and that VEGF-A functions in NP survival in an autocrine/paracrine manner.

Collaboration


Dive into the Kana Miyamoto's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Toshio Suda

National University of Singapore

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge