Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kana Tanabe is active.

Publication


Featured researches published by Kana Tanabe.


Journal of the American Chemical Society | 2012

Full-color tunable photoluminescent ionic liquid crystals based on tripodal pyridinium, pyrimidinium, and quinolinium salts.

Kana Tanabe; Yuko Suzui; Miki Hasegawa; Takashi Kato

Color-tunable luminescent ionic liquid crystals have been designed as a new series of luminescent materials. To achieve tuning of emission colors, intramolecular charge transfer (ICT) character has been incorporated into tripodal molecules. A series of the compounds has three chromophores in each molecule, incorporated with both electron-donating moieties such as alkylaminobenzene and alkoxybenzene, and electron-accepting moieties such as pyridinium, pyrimidinium, and quinolinium parts. These C(3)-symmetrical molecules self-assemble into liquid-crystalline (LC) columnar (Col) structures over wide temperature ranges through nanosegregation between ionic moieties and nonionic aliphatic chains. Photoluminescent (PL) emissions of these tripodal molecules are observed in the visible region both in the self-assembled condensed states and in solutions. For example, a pyrimidinium salt with didodecylaminobenzene moieties exhibits yellowish orange emission (λ(em) = 586 nm in a thin film). Multicolor PL emissions are successfully achieved by simple tuning of changing electron-donating and electron-accepting moieties of the compounds, covering the visible region from blue-green to red. It has been revealed that ICT processes in the excited states and weak intermolecular interactions play important roles in the determination of the PL properties of the materials, by measurements of UV-vis absorption and emission spectra, fluorescence lifetimes, and PL quantum yields.


Chemical Communications | 2010

A redox-switchable [2]rotaxane in a liquid-crystalline state

Takuma Yasuda; Kana Tanabe; Toru Tsuji; Karla K. Cotí; Ivan Aprahamian; J. Fraser Stoddart; Takashi Kato

Redox-driven mechanical movement, which has been achieved for a liquid-crystalline (LC) bistable [2]rotaxane in the LC phase, is accompanied by obvious electrochromism (electrochemically induced changes in color) of the material. The dumbbell-shaped LC [2]rotaxane with redox-active moieties, which interlocks with an ionic macrocycle, forms ordered redox-active condensed states.


Topics in Current Chemistry | 2011

Stimuli-responsive photoluminescent liquid crystals.

Shogo Yamane; Kana Tanabe; Yoshimitsu Sagara; Takashi Kato

We describe mechanochromic and thermochromic photoluminescent liquid crystals. In particular, mechanochromic photoluminescent liquid crystals found recently, which are new stimuli-responsive materials are reported. For example, photoluminescent liquid crystals having bulky dendritic moieties with long alkyl chains change their photoluminescent colors by mechanical stimuli associated with isothermal phase transitions. The photoluminescent properties of molecular assemblies depend on their assembled structures. Therefore, controlling the structures of molecular assemblies with external stimuli leads to the development of stimuli-responsive luminescent materials. Mechanochromic photoluminescent properties are also observed for a photoluminescent metallomesogen and a liquid-crystalline polymer. We also show thermochromic photoluminescent liquid crystals based on origo-(p-phenylenevinylene) and anthracene moieties and a thermochromic photoluminescent metallocomplex.


Scientific Reports | 2015

Antigen exposure in the late light period induces severe symptoms of food allergy in an OVA-allergic mouse model.

Kana Tanabe; Eri Kitagawa; Misaki Wada; Atsushi Haraguchi; Kanami Orihara; Yu Tahara; Atsuhito Nakao; Shigenobu Shibata

The mammalian circadian clock controls many physiological processes that include immune responses and allergic reactions. Several studies have investigated the circadian regulation of intestinal permeability and tight junctions known to be affected by cytokines. However, the contribution of circadian clock to food allergy symptoms remains unclear. Therefore, we investigated the role of the circadian clock in determining the severity of food allergies. We prepared an ovalbumin food allergy mouse model, and orally administered ovalbumin either late in the light or late in the dark period under light-dark cycle. The light period group showed higher allergic diarrhea and weight loss than the dark period group. The production of type 2 cytokines, IL-13 and IL-5, from the mesenteric lymph nodes and ovalbumin absorption was higher in the light period group than in the dark period group. Compared to the dark period group, the mRNA expression levels of the tight junction proteins were lower in the light period group. We have demonstrated that increased production of type 2 cytokines and intestinal permeability in the light period induced severe food allergy symptoms. Our results suggest that the time of food antigen intake might affect the determination of the severity of food allergy symptoms.


Chemical Science | 2014

Asparagine-selective cleavage of peptide bonds through hypervalent iodine-mediated Hofmann rearrangement in neutral aqueous solution

Kana Tanabe; Atsuhiko Taniguchi; Takuya Matsumoto; Kounosuke Oisaki; Youhei Sohma; Motomu Kanai

Amide bonds of peptides and proteins are generally unreactive toward hydrolysis, but backbone amide bond cleavage at a specific amino acid-site in an aqueous neutral solution at mild temperature could have many applications. Chemical cleavage methods that complement enzymatic digestion should facilitate the determination of primary structures for peptides and proteins, especially for substrates containing unnatural amino acids and/or chemical modifications that are resistant to enzymatic hydrolysis. As a new entry of site-selective chemical peptide bond cleavage, an asparagine-selective method using diacetoxyiodobenzene (DIB) is described herein. DIB-mediated Hofmann rearrangement at the primary amide moiety of an Asn side chain afforded a five-membered N-acylurea intermediate that was successively hydrolyzed into two peptide fragments. The Asn-selective peptide bond cleavage proceeded in aqueous neutral solution at 37 °C for various oligopeptides (20 examples) with a protected N-terminal, including a disulfide bond-containing peptide, biologically active peptides, and [Pyr11]Aβ11–40, which is associated with Alzheimer’s disease. An unnatural peptide sequence comprising D-amino acids was also successfully cleaved as well. Moreover, this method was used to determine oxidation sites of a photo-oxidized Aβ3–16 derivative that was resistant to enzymatic cleavage.


Scientific Reports | 2018

LC–MS/MS-based quantitative study of the acyl group- and site-selectivity of human sirtuins to acylated nucleosomes

Kana Tanabe; Jiaan Liu; Daiki Kato; Hitoshi Kurumizaka; Kenzo Yamatsugu; Motomu Kanai; Shigehiro A. Kawashima

Chromatin structure and gene expression are dynamically regulated by posttranslational modifications of histones. Recent advance in mass spectrometry has identified novel types of lysine acylations, such as butyrylation and malonylation, whose functions and regulations are likely different from those of acetylation. Sirtuins, nicotinamide adenine dinucleotide (NAD+)-dependent histone deacetylases, catalyze various deacylations. However, it is poorly understood how distinct sirtuins regulate the histone acylation states of nucleosomes that have many lysine residues. Here, we provide mass spectrometry-based quantitative information about the acyl group- and site-selectivity of all human sirtuins on acylated nucleosomes. The acyl group- and site-selectivity of each sirtuin is unique to its subtype. Sirt5 exclusively removes negatively-charged acyl groups, while Sirt1/2/3/6/7 preferentially remove hydrophobic acyl groups; Sirt1 and Sirt3 selectively remove acetyl group more than butyryl group, whereas Sirt2 and Sirt6 showed the opposite selectivity. Investigating site-selectivity for active sirtuins revealed acylated lysines on H4 tails to be poor substrates and acylated H3K18 to be a good substrate. Furthermore, we found Sirt7 to be a robust deacylase of H3K36/37, and its activity reliant on nucleosome-binding at its C-terminal basic region. All together, our quantitative dataset provides a useful resource in understanding chromatin regulations by histone acylations.


Scientific Reports | 2018

Malonylation of histone H2A at lysine 119 inhibits Bub1-dependent H2A phosphorylation and chromosomal localization of shugoshin proteins

Tadashi Ishiguro; Kana Tanabe; Yuki Kobayashi; Shinsuke Mizumoto; Motomu Kanai; Shigehiro A. Kawashima

Post-translational modifications of histones, such as acetylation and phosphorylation, are highly conserved in eukaryotes and their combination enables precise regulation of many cellular functions. Recent studies using mass spectrometry have revealed various non-acetyl acylations in histones, including malonylation and succinylation, which change the positive charge of lysine into a negative one. However, the molecular function of histone malonylation or succinylation is poorly understood. Here, we discovered the functions of malonylation in histone H2A at lysine 119 (H2A-K119) in chromosome segregation during mitosis and meiosis. Analyses of H2A-K119 mutants in Saccharomyces cerevisiae and Schizosaccharomyces pombe showed that anionic mutations, specifically to aspartate (K119D) and glutamate (K119E), showed mis-segregation of the chromosomes and sensitivity to microtubule-destabilizing reagents in mitosis and meiosis. We found that the chromosomal localization of shugoshin proteins, which depends on Bub1-catalyzed phosphorylation of H2A at serine 121 (H2A-S121), was significantly reduced in the H2A-K119D and the H2A-K119E mutants. Biochemical analyses using K119-unmodified or -malonylated H2A-C-tail peptides showed that H2A-K119 malonylation inhibited the interaction between Bub1 and H2A, leading to a decrease in Bub1-dependent H2A-S121 phosphorylation. Our results indicate a novel crosstalk between lysine malonylation and serine/threonine phosphorylation, which may be important for fine-tuning chromatin functions such as chromosome segregation.


Organic Letters | 2007

Viologen-based redox-active ionic liquid crystals forming columnar phases.

Kana Tanabe; Takuma Yasuda; Masafumi Yoshio; Takashi Kato


Chemistry Letters | 2009

Electro- and Photoactive Molecular Assemblies of Liquid Crystals and Physical Gels

Takashi Kato; Kana Tanabe


Chemistry Letters | 2008

Luminescent Ionic Liquid Crystals Based on Tripodal Pyridinium Salts

Kana Tanabe; Takuma Yasuda; Takashi Kato

Collaboration


Dive into the Kana Tanabe's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Miki Hasegawa

Aoyama Gakuin University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge