Kanak L. Dikshit
Council of Scientific and Industrial Research
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Kanak L. Dikshit.
Molecular Microbiology | 2002
Ranjana Pathania; Naveen Kumar Navani; Anne M. Gardner; Paul R. Gardner; Kanak L. Dikshit
Nitric oxide (NO), generated in large amounts within the macrophages, controls and restricts the growth of internalized human pathogen, Mycobacterium tuberculosis H37Rv. The molecular mechanism by which tubercle bacilli survive within macrophages is currently of intense interest. In this work, we have demonstrated that dimeric haemoglobin, HbN, from M. tuberculosis exhibits distinct nitric oxide dioxygenase (NOD) activity and protects growth and cellular respiration of heterologous hosts, Escherichia coli and Mycobacterium smegmatis, from the toxic effect of exogenous NO and the NO‐releasing compounds. A flavohaemoglobin (HMP)‐deficient mutant of E. coli, unable to metabolize NO, acquired an oxygen‐dependent NO consumption activity in the presence of HbN. On the basis of cellular haem content, the specific NOD activity of HbN was nearly 35‐fold higher than the single‐domain Vitreoscilla haemoglobin (VHb) but was sevenfold lower than the two‐domain flavohaemoglobin. HbN‐dependent NO consumption was sustained with repeated addition of NO, demonstrating that HbN is catalytically reduced within E. coli. Aerobic growth and respiration of a flavohaemoglobin (HMP) mutant of E. coli was inhibited in the presence of exogenous NO but remained insensitive to NO inhibition when these cells produced HbN, VHb or flavohaemoglobin. M. smegmatis, carrying a native HbN very similar to M. tuberculosis HbN, exhibited a 7.5‐fold increase in NO uptake when exposed to gaseous NO, suggesting NO‐induced NOD activity in these cells. In addition, expression of plasmid‐encoded HbN of M. tuberculosis in M. smegmatis resulted in 100‐fold higher NO consumption activity than the isogenic control cells. These results provide strong experimental evidence in support of NO scavenging and detoxification function for the M. tuberculosis HbN. The catalytic NO scavenging by HbN may be highly advantageous for the survival of tubercle bacilli during infection and pathogenesis.
Applied and Environmental Microbiology | 2002
Ramandeep Kaur; Ranjana Pathania; Vishwamitra Sharma; Shekhar C. Mande; Kanak L. Dikshit
ABSTRACT Dimeric hemoglobin (VHb) from the bacterium Vitreoscilla sp. strain C1 displays 30 to 53% sequence identity with the heme-binding domain of flavohemoglobins (flavoHbs) and exhibits the presence of potential sites for the interaction with its FAD/NADH reductase partner. The intersubunit contact region of VHb indicates a small interface between two monomers of the homodimer, suggesting that the VHb dimers may dissociate easily. Gel filtration chromatography of VHb exhibited a 25 to 30% monomeric population of VHb, at a low protein concentration (0.05 mg/ml), whereas dimeric VHb remained dominant at a high protein concentration (10 mg/ml). The structural characteristics of VHb suggest that the flavoreductase can also associate and interact with VHb in a manner analogous to flavoHbs and could yield a flavo-VHb complex. To unravel the functional relevance of the VHb-reductase association, the reductase domain of flavoHb from Ralstonia eutropha (formerly Alcaligenes eutrophus) was genetically engineered to generate a VHb-reductase chimera (VHb-R). The physiological implications of VHb and VHb-R were studied in an hmp mutant of Escherichia coli, incapable of producing any flavoHb. Cellular respiration the of the hmp mutant was instantaneously inhibited in the presence of 10 μM nitric oxide (NO) but remained insensitive to NO inhibition when these cells produced VHb-R. In addition, E. coli overproducing VHb-R exhibited NO consumption activity that was two to three times slower in cells overexpressing only VHb and totally undetectable in the control cells. A purified preparation of VHb-R exhibited a three- to fourfold-higher NADH-dependent NO uptake activity than that of VHb alone. Overproduction of VHb-R in the hmp mutant of E. coli conferred relief from the toxicity of sodium nitroprusside, whereas VHb alone provided only partial benefit under similar condition, suggesting that the association of VHb with reductase improves its capability to relieve the deleterious effect of nitrosative stress. Based on these results, it has been proposed that the unique structural features of VHb may allow it to acquire two functional states in vivo, namely, a single-domain homodimer that may participate in facilitated oxygen transfer or a two-domain heterodimer in association with its partner reductase that may be involved in modulating the cellular response under different environmental conditions. Due to this inherent structural flexibility, it may perform multiple functions in the cellular metabolism of its host. Separation of the oxidoreductase domain from VHb may thus provide a physiological advantage to its host.
Biochemical Journal | 2002
Govindan Rajamohan; Monika Dahiya; Shekhar C. Mande; Kanak L. Dikshit
Staphylokinsae (SAK) forms a bimolecular complex with human plasmin(ogen) and changes its substrate specificity by exposing new exosites that enhances accession of substrate plasminogen (PG) to the plasmin (Pm) active site. Protein modelling studies indicated the crucial role of a loop in SAK (SAK 90-loop; Thr(90)-Glu(100)) for the docking of the substrate PG to the SAK-Pm complex. Function of SAK 90-loop was studied by site-directed mutagenesis and loop deletion. Deletion of nine amino acid residues (Tyr(92)-Glu(100)) from the SAK 90-loop, resulted in approximately 60% reduction in the PG activation, but it retained the ability to generate an active site within the complex of loop mutant of SAK (SAKDelta90) and Pm. The preformed activator complex of SAKDelta90 with Pm, however, displayed a 50-60% reduction in substrate PG activation that remained unaffected in the presence of kringle domains (K1+K2+K3+K4) of PG, whereas PG activation by SAK-Pm complex displayed approximately 50% reduction in the presence of kringles, suggesting the involvement of the kringle domains in modulating the PG activation by native SAK but not by SAKDelta90. Lysine residues (Lys(94), Lys(96), Lys(97) and Lys(98)) of the SAK 90-loop were individually mutated into alanine and, among these four SAK loop mutants, SAK(K97A) and SAK(K98A) exhibited specific activities about one-third and one-quarter respectively of the native SAK. The kinetic parameters of PG activation of their 1:1 complex with Pm indicated that the K(m) values of PG towards the activator complex of these two SAK mutants were 4-6-fold higher, suggesting the decreased accessibility of the substrate PG to the activator complex formed by these SAK mutants. These results demonstrated the involvement of the Lys(97) and Lys(98) residues of the SAK 90-loop in assisting the interaction with substrate PG. These interactions of SAK-Pm activator complex via the SAK 90-loop may provide additional anchorage site(s) to the substrate PG that, in turn, may promote the overall process of SAK-mediated PG activation.
Journal of Biological Chemistry | 2009
Amrita Lama; Sudesh Pawaria; Axel Bidon-Chanal; Arvind Anand; José Luis Gelpí; Swati Arya; Marcelo A. Martí; Darío A. Estrin; F. Javier Luque; Kanak L. Dikshit
Mycobacterium tuberculosis truncated hemoglobin, HbN, is endowed with a potent nitric-oxide dioxygenase activity and has been found to relieve nitrosative stress and enhance in vivo survival of a heterologous host, Salmonella enterica Typhimurium, within the macrophages. These findings implicate involvement of HbN in the defense of M. tuberculosis against nitrosative stress. The protein carries a tunnel system composed of a short and a long tunnel branch that has been proposed to facilitate diatomic ligand migration to the heme and an unusual Pre-A motif at the N terminus, which does not contribute significantly to the structural integrity of the protein, as it protrudes out of the compact globin fold. Strikingly, deletion of Pre-A region from the M. tuberculosis HbN drastically reduces its ability to scavenge nitric oxide (NO), whereas its insertion at the N terminus of Pre-A lacking HbN of Mycobacterium smegmatis improved its nitric-oxide dioxygenase activity. Titration of the oxygenated adduct of HbN and its mutants with NO indicated that the stoichiometric oxidation of protein is severalfold slower when the Pre-A region is deleted in HbN. Molecular dynamics simulations show that the excision of Pre-A motif results in distinct changes in the protein dynamics, which cause the gate of the tunnel long branch to be trapped into a closed conformation, thus impeding migration of diatomic ligands toward the heme active site. The present study, thus, unequivocally demonstrates vital function of Pre-A region in NO scavenging and unravels its unique role by which HbN might attain its efficient NO-detoxification ability.
Applied Microbiology and Biotechnology | 2000
Jitesh Pratap; Govindan Rajamohan; Kanak L. Dikshit
Abstract Degradation of streptokinase (SK) has been frequently observed during large-scale protein production. An enhanced susceptibility of SK to degradation has been correlated with its existence in a partially unfolded state. The influence of the carbohydrate moiety on the stability and functional characteristics of SK has been examined by obtaining the glycoform of SK following its secretion through the methylotrophic yeast Pichia pastoris. Secretion of the protein product was achieved by replacing the native secretion signal codons of SK with those from α-factor leader peptide and expressing the fusion construct under the control of the methanol-inducible alcohol oxidase (ox) promoter of P. pastoris after its integration into the host chromosome. Western blot and zymographic analysis of proteins secreted from the recombinant P. pastoris indicated that SK was glycosylated by the host cells, which resulted in the appearance of a SK species migrating slowly, corresponding to a 55-kDa protein product as compared to the 47-kDa native SK. The glycosylated SK retained a plasminogen activation capability identical to that of its unglycosylated counterpart. Glycoform SK exhibited an enhanced stability profile at 25 °C and 37 °C and improved resistance towards protease treatment compared to unglycosylated SK secreted through P. pastoris after tunicamycin treatment or that secreted from the recombinant Escherichia coli. The results presented thus illustrate that N-linked glycosylation of SK results in 30–40% enhancement of the protein stability and resistance towards degradation but does not interfere with its fibrinolytic function.
Journal of Histochemistry and Cytochemistry | 2002
Ramandeep Kaur; Kanak L. Dikshit; Manoj Raje
We developed an ELISA-based method for rapid selection of optimal blocking agents to be used in antigen quantification by immunogold labeling electron microscopy. Casein, skim milk, BSA from two sources, acetylated BSA, fish skin gelatin, horse serum, and goat serum were tested for their ability to block nonspecific binding of antibody to recombinant Vitreoscilla hemoglobin (VHb) antigen expressed in Escherichia coli cells by ELISA and the results were confirmed by quantitative immunogold labeling transmission electron microscopy (TEM). Ability to minimize NSB was also evaluated by dot-blot and Western blotting methods. The results demonstrated that ELISA was most accurate in predicting the most efficient blocking agent for TEM. Existing methods could not provide an accurate picture of the ability of various reagents to suppress background labeling. The sensitivity of detection of antigens by immunoelectron microscopy depends on the assay procedure being optimized to obtain the highest possible signal along with as low a background (noise) as possible. Our study indicated that an ELISA-based evaluation of various blocking agents could help in the rapid selection and optimization of a suitable protocol for immunogold localization and quantification of antigens by TEM.
FEBS Letters | 2006
Amrita Lama; Sudesh Pawaria; Kanak L. Dikshit
Unraveling of microbial genome data has indicated that two distantly related truncated hemoglobins (trHbs), HbN and HbO, might occur in many species of slow‐growing pathogenic mycobacteria. Involvement of HbN in bacterial defense against NO toxicity and nitrosative stress has been proposed. A gene, encoding a putative HbN homolog with conserved features of typical trHbs, has been identified within the genome sequence of fast‐growing mycobacterium, Mycobacterium smegmatis. Sequence analysis of M. smegmatis HbN indicated that it is relatively smaller in size and lacks N‐terminal pre‐A region, carrying 12‐residue polar sequence motif that is present in HbN of M. tuberculosis. HbN encoding gene of M. smegmatis was expressed in E. coli as a 12.8 kD homodimeric heme protein that binds oxygen reversibly with high affinity (P 50 ∼ 0.081 mm Hg) and autooxidizes faster than M. tuberculosis HbN. The circular dichroism spectra indicate that HbN of M. smegmatis and M. tuberculosis are structurally similar. Interestingly, an hmp mutant of E. coli, unable to metabolize nitric oxide, exhibited very low NO uptake activity in the presence of M. smegmatis HbN as compared to HbN of M. tuberculosis. On the basis of cellular heme content, specific nitric oxide dioxygenase (NOD) activity of M. smegmatis HbN was nearly one‐third of that from M. tuberculosis. Additionally, the hmp mutant of E. coli, carrying M. smegmatis HbN, exhibited nearly 10‐fold lower cell survival under nitrosative stress and nitrite derived reactive nitrogen species as compared to the isogenic strain harboring HbN of M. tuberculosis. Taken together, these results suggest that NO metabolizing activity and protection provided by M. smegmatis HbN against toxicity of NO and reactive nitrogen is significantly lower than HbN of M. tuberculosis. The lower efficiency of M. smegmatis HbN for NO detoxification as compared to M. tuberculosis HbN might be related to different level of NO exposure and nitrosative stress faced by these mycobacteria during their cellular metabolism.
Biotechnology Letters | 2011
Benjamin C. Stark; Kanak L. Dikshit; Krishna R. Pagilla
The hemoglobin from the bacterium Vitreoscilla (VHb) is the first microbial hemoglobin that was conclusively identified as such (in 1986). It has been extensively studied with respect to its ligand binding properties and mechanisms, structure, biochemical functions, and the mechanisms by which its expression is controlled. In addition, cloning of its gene (vgb) into a variety of heterologous hosts has proved that its expression results substantial increases in production of a variety of useful products and ability to degrade potentially harmful compounds. Recent studies (since 2005) have added significant knowledge to all of these areas and shown the broad range of biotechnological applications in which VHb can have a positive effect.
Journal of Biological Chemistry | 2013
Swati Arya; Deepti Sethi; Sandeep Singh; Mangesh Dattu Hade; Vijender Singh; Preeti Raju; Sathi Babu Chodisetti; Deepshikha Verma; Grish C. Varshney; Javed N. Agrewala; Kanak L. Dikshit
Background: Mycobacterium tuberculosis HbN detoxifies nitric oxide and protects its host under nitrosative stress. Results: The HbN remains glycosylated and membrane-localized in M. tuberculosis and modulates host-pathogen interactions. Conclusion: The HbN facilitates intracellular infection and cell survival by evading the immune system of the host. Significance: This study unravels new knowledge about function(s) of HbN in biology and pathogenesis of M. tuberculosis. Mycobacterium tuberculosis (Mtb) is a phenomenally successful human pathogen having evolved mechanisms that allow it to survive within the hazardous environment of macrophages and establish long term, persistent infection in the host against the control of cell-mediated immunity. One such mechanism is mediated by the truncated hemoglobin, HbN, of Mtb that displays a potent O2-dependent nitric oxide dioxygenase activity and protects its host from the toxicity of macrophage-generated nitric oxide (NO). Here we demonstrate for the first time that HbN is post-translationally modified by glycosylation in Mtb and remains localized on the cell membrane and the cell wall. The glycan linkage in the HbN was identified as mannose. The elevated expression of HbN in Mtb and M. smegmatis facilitated their entry within the macrophages as compared with isogenic control cells, and mutation in the glycan linkage of HbN disrupted this effect. Additionally, HbN-expressing cells exhibited higher survival within the THP-1 and mouse peritoneal macrophages, simultaneously increasing the intracellular level of proinflammatory cytokines IL-6 and TNF-α and suppressing the expression of co-stimulatory surface markers CD80 and CD86. These results, thus, suggest the involvement of HbN in modulating the host-pathogen interactions and immune system of the host apart from protecting the bacilli from nitrosative stress inside the activated macrophages, consequently driving cells toward increased infectivity and intracellular survival.
Applied and Environmental Microbiology | 2008
Sudesh Pawaria; Amrita Lama; Manoj Raje; Kanak L. Dikshit
ABSTRACT The success of Mycobacterium tuberculosis as one of the dreaded human pathogens lies in its ability to utilize different defense mechanisms in response to the varied environmental challenges during the course of its intracellular infection, latency, and reactivation cycle. Truncated hemoglobins trHbN and trHbO are thought to play pivotal roles in the cellular metabolism of this organism during stress and hypoxia. To delineate the genetic regulation of the M. tuberculosis hemoglobins, transcriptional fusions of the promoters of the glbN and glbO genes with green fluorescent protein were constructed, and their responses were monitored in Mycobacterium smegmatis and M. tuberculosis H37Ra exposed to environmental stresses in vitro and in M. tuberculosis H37Ra after in vivo growth inside macrophages. The glbN promoter activity increased substantially during stationary phase and was nearly 3- to 3.5-fold higher than the activity of the glbO promoter, which remained more or less constant during different growth phases in M. smegmatis, as well as in M. tuberculosis H37Ra. In both mycobacterial hosts, the glbN promoter activity was induced 1.5- to 2-fold by the general nitrosative stress inducer, nitrite, as well as the NO releaser, sodium nitroprusside (SNP). The glbO promoter was more responsive to nitrite than to SNP, although the overall increase in its activity was much less than that of the glbN promoter. Additionally, the glbN promoter remained insensitive to the oxidative stress generated by H2O2, but the glbO promoter activity increased nearly 1.5-fold under similar conditions, suggesting that the trHb gene promoters are regulated differently under nitrosative and oxidative stress conditions. In contrast, transition metal-induced hypoxia enhanced the activity of both the glbN and glbO promoters at all growth phases; the glbO promoter was induced ∼2.3-fold, which was found to be the highest value for this promoter under all the conditions evaluated. Addition of iron along with nickel reversed the induction in both cases. Interestingly, a concentration-dependent decrease in the activity of both trHb gene promoters was observed when the levels of iron in the growth media were depleted by addition of an iron chelator. These results suggested that an iron/heme-containing oxygen sensor is involved in the modulation of the trHb gene promoter activities directly or indirectly in conjunction with other cellular factors. The modes of promoter regulation under different physiological conditions were found to be similar for the trHbs in both M. smegmatis and M. tuberculosis H37Ra, indicating that the promoters might be regulated by components that are common to the two systems. Confocal microscopy of THP-1 macrophages infected with M. tuberculosis carrying the trHb gene promoter fusions showed that there was a significant level of promoter activity during intracellular growth in macrophages. Time course evaluation of the promoter activity after various times up to 48 h by fluorescence-activated cell sorting analysis of the intracellular M. tuberculosis cells indicated that the glbN promoter was active at all time points assessed, whereas the activity of the glbO promoter remained at a steady-state level up to 24 h postinfection and increased ∼2-fold after 48 h of infection. Thus, the overall regulation pattern of the M. tuberculosis trHb gene promoters correlates not only with the stresses that the tubercle bacillus is likely to encounter once it is in the macrophage environment but also with our current knowledge of their functions. The in vivo studies that demonstrated for the first time expression of trHbs during macrophage infection of M. tuberculosis strongly indicate that the hemoglobins are required, and thus important, during the intracellular phase of the bacterial cycle. The present study of transcriptional regulation of M. tuberculosis hemoglobins in vitro under various stress conditions and in vivo after macrophage infection supports the hypothesis that biosynthesis of both trHbs (trHbN and trHbO) in the native host is regulated via the environmental signals that the tubercle bacillus receives during macrophage infection and growth in its human host.