Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kanako Sugawara is active.

Publication


Featured researches published by Kanako Sugawara.


Molecular Genetics and Metabolism | 2010

Plasma globotriaosylsphingosine as a biomarker of Fabry disease

Tadayasu Togawa; Takashi Kodama; Toshihiro Suzuki; Kanako Sugawara; Takahiro Tsukimura; Toya Ohashi; Nobuyuki Ishige; Ken Suzuki; Teruo Kitagawa; Hitoshi Sakuraba

Fabry disease is an X-linked genetic disorder caused by a deficiency of alpha-galactosidase A (GLA) activity. As enzyme replacement therapy (ERT) involving recombinant GLAs has been introduced for this disease, a useful biomarker for diagnosis and monitoring of therapy has been strongly required. We measured globotriaosylsphingosine (lyso-Gb3) and globotriaosylceramide (Gb3) in plasma samples from ten hemizygous males (six classic and four variant cases) and eight heterozygous females with Fabry disease, and investigated the responses of plasma lyso-Gb3 and Gb3 in a male Fabry patient who had undergone ERT for 4years to determine whether plasma lyso-Gb3 and Gb3 could be biomarkers of Fabry disease. The results revealed that plasma lyso-Gb3 was apparently increased in male patients and was higher in cases of the classic form than those of the variant one. In Fabry females, plasma lyso-Gb3 was moderately increased in both symptomatic and asymptomatic cases, and there was a correlation between the increase in lyso-Gb3 and the decrease in GLA activity. As to plasma Gb3, the levels in the variant Fabry hemizygotes and Fabry heterozygotes could not be distinguished from those in the controls, although those in the classic Fabry hemizygotes were increased. The plasma lyso-Gb3 level in the Fabry patient who had received ERT was elevated at the baseline and fell more dramatically on ERT than that of Gb3. Plasma lyso-Gb3 could thus be a potential biomarker of Fabry disease.


American Journal of Human Genetics | 2009

Use of a Modified α-N-Acetylgalactosaminidase in the Development of Enzyme Replacement Therapy for Fabry Disease

Youichi Tajima; Ikuo Kawashima; Takahiro Tsukimura; Kanako Sugawara; Mayuko Kuroda; Toshihiro Suzuki; Tadayasu Togawa; Yasunori Chiba; Yoshifumi Jigami; Kazuki Ohno; Tomoko Fukushige; Takuro Kanekura; Kohji Itoh; Toya Ohashi; Hitoshi Sakuraba

A modified alpha-N-acetylgalactosaminidase (NAGA) with alpha-galactosidase A (GLA)-like substrate specificity was designed on the basis of structural studies and was produced in Chinese hamster ovary cells. The enzyme acquired the ability to catalyze the degradation of 4-methylumbelliferyl-alpha-D-galactopyranoside. It retained the original NAGAs stability in plasma and N-glycans containing many mannose 6-phosphate (M6P) residues, which are advantageous for uptake by cells via M6P receptors. There was no immunological cross-reactivity between the modified NAGA and GLA, and the modified NAGA did not react to serum from a patient with Fabry disease recurrently treated with a recombinant GLA. The enzyme cleaved globotriaosylceramide (Gb3) accumulated in cultured fibroblasts from a patient with Fabry disease. Furthermore, like recombinant GLA proteins presently used for enzyme replacement therapy (ERT) for Fabry disease, the enzyme intravenously injected into Fabry model mice prevented Gb3 storage in the liver, kidneys, and heart and improved the pathological changes in these organs. Because this modified NAGA is hardly expected to cause an allergic reaction in Fabry disease patients, it is highly promising as a new and safe enzyme for ERT for Fabry disease.


Molecular Genetics and Metabolism | 2009

Molecular interaction of imino sugars with human α-galactosidase: Insight into the mechanism of complex formation and pharmacological chaperone action in Fabry disease

Kanako Sugawara; Youichi Tajima; Ikuo Kawashima; Takahiro Tsukimura; Seiji Saito; Kazuki Ohno; Kunihiko Iwamoto; Toshihide Kobayashi; Kohji Itoh; Hitoshi Sakuraba

Enzyme enhancement therapy (EET) for Fabry disease involving imino sugars has been developed and attracted interest. It is thought that imino sugars act as pharmacological chaperones for wild-type and mutant alpha-galactosidases (GLAs) in cells, but the mechanisms underlying the molecular interactions between the imino sugars and the enzyme have not been clarified yet. We examined various kinds of imino sugars and found that galactostatin bisulfite (GBS) inhibited GLA in vitro and increased the enzyme activity in cultured Fabry fibroblasts as in the case of 1-deoxygalactonojirimycin (DGJ). Then, we analyzed the molecular interactions between the imino sugars and recombinant human GLA by means of isothermal titration calorimetry and surface plasmon resonance biosensor assays, and first determined the thermodynamic and binding-kinetics parameters of imino sugar and GLA complex formation. The results revealed that DGJ bound to the enzyme more strongly than GBS, the binding of DGJ to the enzyme protein being enthalpy-driven. In the case of GBS, the reaction was mainly enthalpy-driven, but there was a possibility that entropy-driven factors were involved in the binding. Structural analysis in silico revealed that both the chemicals fit into the active-site pocket and undergo hydrogen bonding with residues comprising the active-site pocket including the catalytic ones. The side chain of GBS was oriented towards the entrance of the active-site pocket, and thus it could be in contact with residues comprising the wall of the active-site pocket. Thermodynamic, kinetic and structural studies should provide us with a lot of information for improving EET for Fabry disease.


Clinica Chimica Acta | 2008

Binding parameters and thermodynamics of the interaction of imino sugars with a recombinant human acid α-glucosidase (alglucosidase alfa): Insight into the complex formation mechanism

Michiru Yoshimizu; Youichi Tajima; Fumiko Matsuzawa; Seiichi Aikawa; Kunihiko Iwamoto; Toshihide Kobayashi; Tim Edmunds; Kaori Fujishima; Daisuke Tsuji; Kohji Itoh; Masahiko Ikekita; Ikuo Kawashima; Kanako Sugawara; Naho Ohyanagi; Toshihiro Suzuki; Tadayasu Togawa; Kazuki Ohno; Hitoshi Sakuraba

BACKGROUND Recently, enzyme enhancement therapy (EET) for Pompe disease involving imino sugars, which act as potential inhibitors of acid alpha-glucosidases in vitro, to improve the stability and/or transportation of mutant acid alpha-glucosidases in cells was studied and attracted interest. However, the mechanism underlying the molecular interaction between the imino sugars and the enzyme has not been clarified yet. METHODS We examined the inhibitory and binding effects of four imino sugars on a recombinant human acid alpha-glucosidase, alglucosidase alfa, by means of inhibition assaying and isothermal titration calorimetry (ITC). Furthermore, we built structural models of complexes of the catalytic domain of the enzyme with the imino sugars bound to its active site by homology modeling, and examined the molecular interaction between them. RESULTS All of the imino sugars examined exhibited a competitive inhibitory action against the enzyme, 1-deoxynojirimycin (DNJ) exhibiting the strongest action among them. ITC revealed that one compound molecule binds to one enzyme molecule and that DNJ most strongly binds to the enzyme among them. Structural analysis revealed that the active site of the enzyme is almost completely occupied by DNJ. CONCLUSION These biochemical and structural analyses increased our understanding of the molecular interaction between a human acid alpha-glucosidase and imino sugars.


Journal of Human Genetics | 2009

Structural modeling of mutant α-glucosidases resulting in a processing/transport defect in Pompe disease

Kanako Sugawara; Seiji Saito; Masakazu Sekijima; Kazuki Ohno; Youichi Tajima; Marian A. Kroos; Arnold J. J. Reuser; Hitoshi Sakuraba

To elucidate the mechanism underlying transport and processing defects from the viewpoint of enzyme folding, we constructed three-dimensional models of human acid α-glucosidase encompassing 27 relevant amino acid substitutions by means of homology modeling. Then, we determined in each separate case the number of affected atoms, the root-mean-square distance value and the solvent-accessible surface area value. The analysis revealed that the amino acid substitutions causing a processing or transport defect responsible for Pompe disease were widely spread over all of the five domains comprising the acid α-glucosidase. They were distributed from the core to the surface of the enzyme molecule, and the predicted structural changes varied from large to very small. Among the structural changes, we paid particular attention to G377R and G483R. These two substitutions are predicted to cause electrostatic changes in neighboring small regions on the molecular surface. The quality control system of the endoplasmic reticulum apparently detects these very small structural changes and degrades the mutant enzyme precursor (G377R), but also the cellular sorting system might be misled by these minor changes whereby the precursor is secreted instead of being transported to lysosomes (G483R).


Molecular Genetics and Metabolism | 2008

Structural and clinical implications of amino acid substitutions in N-acetylgalactosamine-4-sulfatase: Insight into mucopolysaccharidosis type VI

Seiji Saito; Kazuki Ohno; Kanako Sugawara; Hitoshi Sakuraba

To elucidate the basis of mucopolysaccharidosis type VI (MPS VI) from the point of view of enzyme structure, we built structural models of mutant N-acetylgalactosamine-4-sulfatase (4S) resulting from 34 missense mutations (17 severe and 17 attenuated), and analyzed the influence of each amino acid replacement on the structure by calculating the number of atoms affected. Then, we calculated the average of solvent-accessible surface area value of the residues for which a substitution was identified in the severe MPS VI group and compared it with that in the attenuated MPS VI group. In the severe MPS VI group, the number of atoms influenced by a mutation was generally larger than that in the attenuated MPS VI group in both the main chain and the side chain, and residues associated with the mutations found in the severe MPS VI group tended to be less solvent-accessible than those in the attenuated MPS VI group. Furthermore, we analyzed the structural changes in 4S caused by six amino acid substitutions, for which the expressed proteins have been characterized, by means of color imaging. The results revealed that R95Q, G144R, H393P, and C521Y cause large structural changes, and that they are associated with the severe phenotype. On the other hand, G137V and Y210C are thought to cause small structural changes in a limited region resulting in the attenuated phenotype. Structural study is useful for elucidating the basis of MPS VI and predicting the influence of amino acid substitutions on clinical outcome, although there are a couple of exceptional cases.


Journal of Human Genetics | 2009

Structural bases of GM1 gangliosidosis and Morquio B disease.

Mizuki Morita; Seiji Saito; Kazuyoshi Ikeda; Kazuki Ohno; Kanako Sugawara; Toshihiro Suzuki; Tadayasu Togawa; Hitoshi Sakuraba

Allelic mutations of the lysosomal β-galactosidase gene cause heterogeneous clinical phenotypes, such as GM1 gangliosidosis and Morquio B disease, the former being further classified into three variants, namely infantile, juvenile and adult forms; and heterogeneous biochemical phenotypes were shown in these forms. We tried to elucidate the bases of these diseases from a structural viewpoint. We first constructed a three-dimensional structural model of human β-galactosidase by means of homology modeling. The human β-galactosidase consists of three domains, such as, a TIM barrel fold domain, which functions as a catalytic domain, and two galactose-binding domain-like fold domains. We then constructed structural models of representative mutant β-galactosidase proteins (G123R, R201C, I51T and Y83H) and predicted the structural change associated with each phenotype by calculating the number of affected atoms, determining the root-mean-square deviation and the solvent-accessible surface area, and by color imaging. The results show that there is a good correlation between the structural changes caused by amino-acid substitutions in the β-galactosidase molecule, as well as biochemical and clinical phenotypes in these representative cases. Protein structural study is useful for elucidating the bases of these diseases.


Molecular Genetics and Metabolism | 2008

Structural consequences of amino acid substitutions causing Tay–Sachs disease

Kazuki Ohno; Seiji Saito; Kanako Sugawara; Hitoshi Sakuraba

To determine the structural changes in the alpha-subunit of beta-hexosaminidase due to amino acid substitutions causing Tay-Sachs disease, we built structural models of mutant alpha-subunits resulting from 33 missense mutations (24 infantile and 9 late-onset), and analyzed the influence of each amino acid replacement on the structure by calculating the number of atoms affected and determining the solvent-accessible surface area of the corresponding amino acid residue in the wild-type alpha-subunit. In the infantile Tay-Sachs group, the number of atoms influenced by a mutation was generally larger than that in the late-onset Tay-Sachs group in both the main chain and the side chain, and residues associated with the mutations found in the infantile Tay-Sachs group tended to be less solvent-accessible than those in the late-onset Tay-Sachs group. Furthermore, color imaging determined the distribution and degree of the structural changes caused by representative amino acid substitutions, and that there were also differences between the infantile and late-onset Tay-Sachs disease groups. Structural study is useful for elucidating the basis of Tay-Sachs disease.


Biochemical and Biophysical Research Communications | 2008

Structural basis of aspartylglucosaminuria.

Seiji Saito; Kazuki Ohno; Kanako Sugawara; Toshihiro Suzuki; Tadayasu Togawa; Hitoshi Sakuraba

To elucidate the basis of aspartylglucosaminuria (AGU) from the viewpoint of enzyme structure, we constructed structural models of mutant aspartylglucosaminidase (AGA) proteins using molecular modeling software, TINKER. We classified the amino acid substitutions responsible for AGU and divided them into three groups based on the biochemical phenotype. Then, we examined the structural changes in the AGA protein for each group by calculating the solvent-accessible surface area (ASA), the number of atoms affected, and the root-mean-square deviation (RMSD). Our results revealed that the structural changes in group 1, which exhibits folding/transport defects and a complete deficiency of AGA activity, were generally large and located in the core region of the enzyme molecule. In group 2, exhibiting the mature AGA protein but no AGA activity, the functionally important region of the enzyme molecule was seriously affected. In group 3 exhibiting residual AGA activity, the structural changes in AGA were small and localized near the surface of the enzyme molecule. Coloring of affected atoms based on the distances between the wild-type and mutant ones revealed the characteristic structural changes in the AGA protein geographically and semi-quantitatively. Structural investigation provides us with a deeper insight into the basis of AGU.


Journal of Human Genetics | 2010

Prediction of the clinical phenotype of Fabry disease based on protein sequential and structural information.

Seiji Saito; Kazuki Ohno; Jun Sese; Kanako Sugawara; Hitoshi Sakuraba

Fabry disease is a genetic disorder caused by a deficiency of α-galactosidase, exhibiting a wide clinical spectrum, from the early-onset severe ‘classic’ form to the late-onset mild ‘variant’ one. Recent screening of newborns revealed that the incidence of Fabry disease is unexpectedly high, and that the genotypes of patients with this disease are quite heterogeneous and many novel mutations have been identified in them. This suggests that a lot of Fabry patients will be found in an early clinical stage when the prognosis is obscure and a proper therapeutic schedule for them cannot be determined. Thus, it is significant to predict the clinical phenotype of this disease resulting from a novel mutation. Herein, we proposed a phenotype prediction model based on sequential and structural information. As far as we know, this is the first report of phenotype prediction for Fabry disease. First, we investigated the sequential and structural changes in the α-galactosidase molecule responsible for Fabry disease. The results showed that there are quite large differences in several properties between the classic and variant groups. We then developed a phenotype prediction model involving the decision tree technique. The accuracy of this prediction model is high (86%), and Matthews correlation coefficient is also high (0.49). The phenotype predictor proposed in this paper may be useful for determining a proper therapeutic schedule for this disease.

Collaboration


Dive into the Kanako Sugawara's collaboration.

Top Co-Authors

Avatar

Hitoshi Sakuraba

Meiji Pharmaceutical University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Seiji Saito

Hokkaido Information University

View shared research outputs
Top Co-Authors

Avatar

Tadayasu Togawa

Meiji Pharmaceutical University

View shared research outputs
Top Co-Authors

Avatar

Toshihiro Suzuki

Meiji Pharmaceutical University

View shared research outputs
Top Co-Authors

Avatar

Youichi Tajima

Meiji Pharmaceutical University

View shared research outputs
Top Co-Authors

Avatar

Ikuo Kawashima

Meiji Pharmaceutical University

View shared research outputs
Top Co-Authors

Avatar

Takahiro Tsukimura

Meiji Pharmaceutical University

View shared research outputs
Top Co-Authors

Avatar

Kohji Itoh

University of Tokushima

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge