Kanda Sangthongpitag
Agency for Science, Technology and Research
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Kanda Sangthongpitag.
Molecular Cancer Therapeutics | 2010
Veronica Novotny-Diermayr; Kanda Sangthongpitag; Chang Yong Hu; Xiaofeng Wu; Nina Sausgruber; Pauline Yeo; Gediminas Greicius; Sven Pettersson; Ai Leng Liang; Yung Kiang Loh; Zahid Bonday; Kee Chuan Goh; Hannes Hentze; Stefan Hart; Haishan Wang; Kantharaj Ethirajulu; Jeanette Marjorie Wood
Although clinical responses in liquid tumors and certain lymphomas have been reported, the clinical efficacy of histone deacetylase inhibitors in solid tumors has been limited. This may be in part due to the poor pharmacokinetic of these drugs, resulting in inadequate tumor concentrations of the drug. SB939 is a new hydroxamic acid based histone deacetylase inhibitor with improved physicochemical, pharmaceutical, and pharmacokinetic properties. In vitro, SB939 inhibits class I, II, and IV HDACs, with no effects on other zinc binding enzymes, and shows significant antiproliferative activity against a wide variety of tumor cell lines. It has very favorable pharmacokinetic properties after oral dosing in mice, with >4-fold increased bioavailability and 3.3-fold increased half-life over suberoylanilide hydroxamic acid (SAHA). In contrast to SAHA, SB939 accumulates in tumor tissue and induces a sustained inhibition of histone acetylation in tumor tissue. These excellent pharmacokinetic properties translated into a dose-dependent antitumor efficacy in a xenograft model of human colorectal cancer (HCT-116), with a tumor growth inhibition of 94% versus 48% for SAHA (both at maximum tolerated dose), and was also effective when given in different intermittent schedules. Furthermore, in APCmin mice, a genetic mouse model of early-stage colon cancer, SB939 inhibited adenoma formation, hemocult scores, and increased hematocrit values more effectively than 5-fluorouracil. Emerging clinical data from phase I trials in cancer patients indicate that the pharmacokinetic and pharmacologic advantages of SB939 are translated to the clinic. The efficacy of SB939 reported here in two very different models of colorectal cancer warrants further investigation in patients. Mol Cancer Ther; 9(3); 642–52
Oncogene | 2016
Babita Madan; Zhiyuan Ke; Nathan Harmston; Soo Yei Ho; A O Frois; Jenefer Alam; Duraiswamy Athisayamani Jeyaraj; Vishal Pendharkar; Kakaly Ghosh; I H Virshup; Vithya Manoharan; Esther H. Q. Ong; Kanda Sangthongpitag; Jeffrey Hill; Enrico Petretto; Thomas H. Keller; May Ann Lee; A Matter; David M. Virshup
Enhanced sensitivity to Wnts is an emerging hallmark of a subset of cancers, defined in part by mutations regulating the abundance of their receptors. Whether these mutations identify a clinical opportunity is an important question. Inhibition of Wnt secretion by blocking an essential post-translational modification, palmitoleation, provides a useful therapeutic intervention. We developed a novel potent, orally available PORCN inhibitor, ETC-1922159 (henceforth called ETC-159) that blocks the secretion and activity of all Wnts. ETC-159 is remarkably effective in treating RSPO-translocation bearing colorectal cancer (CRC) patient-derived xenografts. This is the first example of effective targeted therapy for this subset of CRC. Consistent with a central role of Wnt signaling in regulation of gene expression, inhibition of PORCN in RSPO3-translocated cancers causes a marked remodeling of the transcriptome, with loss of cell cycle, stem cell and proliferation genes, and an increase in differentiation markers. Inhibition of Wnt signaling by PORCN inhibition holds promise as differentiation therapy in genetically defined human cancers.
Journal of Medicinal Chemistry | 2011
Haishan Wang; Niefang Yu; Dizhong Chen; Ken Chi Lik Lee; Pek Ling Lye; Joyce Wei Wei Chang; Weiping Deng; Melvin Ng; Ting Lu; Mui Ling Khoo; Anders Poulsen; Kanda Sangthongpitag; Xiaofeng Wu; Changyong Hu; Kee Chuan Goh; Xukun Wang; Lijuan Fang; Kay Lin Goh; Hwee Hoon Khng; Siok Kun Goh; Pauline Yeo; Xin Liu; Zahid Bonday; Jeanette Marjorie Wood; Brian W. Dymock; Ethirajulu Kantharaj; Eric T. Sun
A series of 3-(1,2-disubstituted-1H-benzimidazol-5-yl)-N-hydroxyacrylamides (1) were designed and synthesized as HDAC inhibitors. Extensive SARs have been established for in vitro potency (HDAC1 enzyme and COLO 205 cellular IC(50)), liver microsomal stability (t(1/2)), cytochrome P450 inhibitory (3A4 IC(50)), and clogP, among others. These parameters were fine-tuned by carefully adjusting the substituents at positions 1 and 2 of the benzimidazole ring. After comprehensive in vitro and in vivo profiling of the selected compounds, SB939 (3) was identified as a preclinical development candidate. 3 is a potent pan-HDAC inhibitor with excellent druglike properties, is highly efficacious in in vivo tumor models (HCT-116, PC-3, A2780, MV4-11, Ramos), and has high and dose-proportional oral exposures and very good ADME, safety, and pharmaceutical properties. When orally dosed to tumor-bearing mice, 3 is enriched in tumor tissue which may contribute to its potent antitumor activity and prolonged duration of action. 3 is currently being tested in phase I and phase II clinical trials.
Journal of Medicinal Chemistry | 2013
E.A Larsson; Anna Jansson; Fui Mee Ng; Siew Wen Then; R Panicker; B Liu; Kanda Sangthongpitag; Pendharkar; S.J Tai; Jeffrey Hill; Chen Dan; Soo Yei Ho; W.W Cheong; Anders Poulsen; Stéphanie Blanchard; Grace Ruiting Lin; Jenefer Alam; Thomas H. Keller; Pär Nordlund
Tankyrases constitute potential drug targets for cancer and myelin-degrading diseases. We have applied a structure- and biophysics-driven fragment-based ligand design strategy to discover a novel family of potent inhibitors for human tankyrases. Biophysical screening based on a thermal shift assay identified highly efficient fragments binding in the nicotinamide-binding site, a local hot spot for fragment binding. Evolution of the fragment hit 4-methyl-1,2-dihydroquinolin-2-one (2) along its 7-vector yields dramatic affinity improvements in the first cycle of expansion. A crystal structure of 7-(2-fluorophenyl)-4-methylquinolin-2(1H)-one (11) reveals that the nonplanar compound extends with its fluorine atom into a pocket, which coincides with a region of the active site where structural differences are seen between tankyrases and other poly(ADP-ribose) polymerase (PARP) family members. A further cycle of optimization yielded compounds with affinities and IC50 values in the low nanomolar range and with good solubility, PARP selectivity, and ligand efficiency.
Molecular Cancer Therapeutics | 2013
Alessandra De Robertis; Silvia Valensin; Marco Rossi; Patrizia Tunici; Margherita Verani; Antonella De Rosa; Cinzia Giordano; Maurizio Varrone; Arianna Nencini; Carmela Pratelli; Tiziana Benicchi; Annette Bakker; Jeffrey Hill; Kanda Sangthongpitag; Vishal Pendharkar; Liu Boping; Ng Fui Mee; Then Siew Wen; Tai Shi Jing; Seong-Moon Cheong; Xi He; Andrea Caricasole; Massimiliano Salerno
Glioblastoma multiforme (GBM) is the most common and prognostically unfavorable form of brain tumor. The aggressive and highly invasive phenotype of these tumors makes them among the most anatomically damaging human cancers with a median survival of less than 1 year. Although canonical Wnt pathway activation in cancers has been historically linked to the presence of mutations involving key components of the pathway (APC, β-catenin, or Axin proteins), an increasing number of studies suggest that elevated Wnt signaling in GBM is initiated by several alternative mechanisms that are involved in different steps of the disease. Therefore, inhibition of Wnt signaling may represent a therapeutically relevant approach for GBM treatment. After the selection of a GBM cell model responsive to Wnt inhibition, we set out to develop a screening approach for the identification of compounds capable of modulating canonical Wnt signaling and associated proliferative responses in GBM cells. Here, we show that the small molecule SEN461 inhibits the canonical Wnt signaling pathway in GBM cells, with relevant effects at both molecular and phenotypic levels in vitro and in vivo. These include SEN461-induced Axin stabilization, increased β-catenin phosphorylation/degradation, and inhibition of anchorage-independent growth of human GBM cell lines and patient-derived primary tumor cells in vitro. Moreover, in vivo administration of SEN461 antagonized Wnt signaling in Xenopus embryos and reduced tumor growth in a GBM xenograft model. These data represent the first demonstration that small-molecule–mediated inhibition of Wnt signaling may be a potential approach for GBM therapeutics. Mol Cancer Ther; 12(7); 1180–9. ©2013 AACR.
Journal of Cellular and Molecular Medicine | 2013
Meng Ling Choong; Christian Pecquet; Vishal Pendharkar; Carmen C. Diaconu; Jacklyn Wei Yan Yong; Shi Jing Tai; Si Fang Wang; Jean-Philippe Defour; Kanda Sangthongpitag; Jean-Luc Villeval; William Vainchenker; Stefan N. Constantinescu; May Ann Lee
Current JAK2 inhibitors used for myeloproliferative neoplasms (MPN) treatment are not specific enough to selectively suppress aberrant JAK2 signalling and preserve physiological JAK2 signalling. We tested whether combining a JAK2 inhibitor with a series of serine threonine kinase inhibitors, targeting nine signalling pathways and already used in clinical trials, synergized in inhibiting growth of haematopoietic cells expressing mutant and wild‐type forms of JAK2 (V617F) or thrombopoietin receptor (W515L). Out of 15 kinase inhibitors, the ZSTK474 phosphatydylinositol‐3′‐kinase (PI3K) inhibitor molecule showed strong synergic inhibition by Chou and Talalay analysis with JAK2 and JAK2/JAK1 inhibitors. Other pan‐class I, but not gamma or delta specific PI3K inhibitors, also synergized with JAK2 inhibitors. Synergy was not observed in Bcr‐Abl transformed cells. The best JAK2/JAK1 and PI3K inhibitor combination pair (ruxolitinib and GDC0941) reduces spleen weight in nude mice inoculated with Ba/F3 cells expressing TpoR and JAK2 V617F. It also exerted strong inhibitory effects on erythropoietin‐independent erythroid colonies from MPN patients and JAK2 V617F knock‐in mice, where at certain doses, a preferential inhibition of JAK2 V617F mutated progenitors was detected. Our data support the use of a combination of JAK2 and pan‐class I PI3K inhibitors in the treatment of MPNs.
Cell Reports | 2016
Constance Qiao Xin Yeo; Irina Alexander; Zhaoru Lin; Shuhui Lim; Obed Akwasi Aning; Ramesh Kumar; Kanda Sangthongpitag; Vishal Pendharkar; Vincent H.B. Ho; Chit Fang Cheok
p53 tumor suppressor maintains genomic stability, typically acting through cell-cycle arrest, senescence, and apoptosis. We discovered a function of p53 in preventing conflicts between transcription and replication, independent of its canonical roles. p53 deficiency sensitizes cells to Topoisomerase (Topo) II inhibitors, resulting in DNA damage arising spontaneously during replication. Topoisomerase IIα (TOP2A)-DNA complexes preferentially accumulate in isogenic p53 mutant or knockout cells, reflecting an increased recruitment of TOP2A to regulate DNA topology. We propose that p53 acts to prevent DNA topological stress originating from transcription during the S phase and, therefore, promotes normal replication fork progression. Consequently, replication fork progression is impaired in the absence of p53, which is reversed by transcription inhibition. Pharmacologic inhibition of transcription also attenuates DNA damage and decreases Topo-II-DNA complexes, restoring cell viability in p53-deficient cells. Together, our results demonstrate a function of p53 that may underlie its role in tumor suppression.
Journal of Medicinal Chemistry | 2015
Athisayamani Jeyaraj Duraiswamy; May Ann Lee; Babita Madan; Shi Hua Ang; Eldwin Sum Wai Tan; Wei Wen Vivien Cheong; Zhiyuan Ke; Vishal Pendharkar; Li Jun Ding; Yun Shan Chew; Vithya Manoharan; Kanda Sangthongpitag; Jenefer Alam; Anders Poulsen; Soo Yei Ho; David M. Virshup; Thomas H. Keller
Wnt proteins regulate various cellular functions and serve distinct roles in normal development throughout life. Wnt signaling is dysregulated in various diseases including cancers. Porcupine (PORCN) is a membrane-bound O-acyltransferase that palmitoleates the Wnts and hence is essential for their secretion and function. The inhibition of PORCN could serve as a therapeutic approach for the treatment of a number of Wnt-dependent cancers. Herein, we describe the identification of a Wnt secretion inhibitor from cellular high throughput screening. Classical SAR based cellular optimization provided us with a PORCN inhibitor with nanomolar activity and excellent bioavailability that demonstrated efficacy in a Wnt-driven murine tumor model. Finally, we also discovered that enantiomeric PORCN inhibitors show very different activity in our reporter assay, suggesting that such compounds may be useful for mode of action studies on the PORCN O-acyltransferase.
Drug Metabolism and Disposition | 2011
Ramesh Jayaraman; Venkatesh Pilla Reddy; Mohammed Khalid Pasha; Haishan Wang; Kanda Sangthongpitag; Pauline Yeo; Chang Yong Hu; Xiaofeng Wu; Liu Xin; Evelyn Goh; Lee Sun New; Kantharaj Ethirajulu
The preclinical absorption, distribution, metabolism, and excretion (ADME) properties of Pracinostat [(2E)-3-[2-butyl-1-[2-(diethylamino) ethyl]-1H-benzimidazol-5-yl]-N-hydroxyarylamide hydrochloride; SB939], an orally active histone deacetylase inhibitor, were characterized and its human pharmacokinetics (PK) was predicted using Simcyp and allometric scaling. SB939 showed high aqueous solubility with high Caco-2 permeability. Metabolic stability was relatively higher in dog and human liver microsomes than in mouse and rat. The major metabolites formed in human liver microsomes were also observed in preclinical species. Human cytochrome P450 (P450) phenotyping showed that SB939 was primarily metabolized by CYP3A4 and CYP1A2. SB939 did not significantly inhibit human CYP3A4, 1A2, 2D6, and 2C9 (>25 μM) but inhibited 2C19 (IC50 = 5.8 μM). No significant induction of human CYP3A4 and 1A2 was observed in hepatocytes. Plasma protein binding in mouse, rat, dog, and human ranged between ∼84 and 94%. The blood-to-plasma ratio was ∼1.0 in human blood. SB939 showed high systemic clearance (relative to liver blood flow) of 9.2, 4.5, and 1.5 l · h−1 · kg−1 and high volume of distribution at steady state (>0.6 l/kg) of 3.5, 1.7, and 4.2 l/kg in mouse, rat, and dog, respectively. The oral bioavailability was 34, 65, and ∼3% in mice, dogs, and rats, respectively. The predicted oral PK profile and parameters of SB939, using Simcyp and allometric scaling, were in good agreement with observed data in humans. Simcyp predictions showed lack of CYP3A4 and 2C19 drug-drug interaction potential for SB939. In summary, the preclinical ADME of SB939 supported its preclinical and clinical development as an oral drug candidate.
Cellular Signalling | 2015
Wei Zhang; Suat Peng Neo; Jayantha Gunaratne; Anders Poulsen; Liu Boping; Esther H. Q. Ong; Kanda Sangthongpitag; Vishal Pendharkar; Jeffrey Hill; Stephen M. Cohen
The high proliferation rate of cancer cells, together with environmental factors such as hypoxia and nutrient deprivation can cause Endoplasmic Reticulum (ER) stress. The protein kinase PERK is an essential mediator in one of the three ER stress response pathways. Genetic and pharmacological inhibition of PERK has been reported to limit tumor growth in xenograft models. Here we provide evidence that inactive PERK interacts with the nuclear pore-associated Vault complex protein and that this compromises Vault-mediated nuclear transport of PTEN. Pharmacological inhibition of PERK under ER stress results is abnormal sequestration of the Vault complex, leading to increased cytoplasmic PTEN activity and lower AKT activation. As the PI3K/PTEN/AKT pathway is crucial for many aspects of cell growth and survival, this unexpected effect of PERK inhibitors on AKT activity may have implications for their potential use as therapeutic agents.