Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kandace J. Williams is active.

Publication


Featured researches published by Kandace J. Williams.


Mutation Research | 2013

Mutation research/fundamental and molecular mechanisms of mutagenesis: Special issue: DNA repair and genetic instability

Kandace J. Williams; Robert W. Sobol

Ionizing radiation (IR) induces DNA strand breaks leading to cell death or deleterious genome rearrangements. In the present study, we examined the role of N-acetyl-L-cysteine (NAC), a clinically proven safe agent, for it’s ability to protect against -ray-induced DNA strand breaks and/or DNA deletions in yeast andmammals. In the yeast Saccharomyces cerevisiae, DNA deletions were scored by reversion to histidine prototrophy. Human lymphoblastoid cells were examined for the frequency of -H2AX foci formation, indicative of DNA double strand break formation. DNA strand breaks were also measured in mouse peripheral blood by the alkaline comet assay. In yeast, NAC reduced the frequency of IR-induced DNA deletions. However, NAC did not protect against cell death. NAC also reduced -H2AX foci formation in human lymphoblastoid cells but had no protective effect in the colony survival assay. NAC administration via drinking water fully protected against DNA strand breaks in mice whole-body irradiated with 1Gy but not with 4Gy. NAC treatment in the absence of irradiation was not genotoxic. These data suggest that, given the safety and efficacy of NAC in humans, NAC may be useful in radiation therapy to prevent radiation-mediated genotoxicity, but does not interfere with efficient cancer cell killing.


Mutation Research | 2013

Structural, molecular and cellular functions of MSH2 and MSH6 during DNA mismatch repair, damage signaling and other noncanonical activities

Michael A. Edelbrock; Saravanan Kaliyaperumal; Kandace J. Williams

The field of DNA mismatch repair (MMR) has rapidly expanded after the discovery of the MutHLS repair system in bacteria. By the mid 1990s yeast and human homologues to bacterial MutL and MutS had been identified and their contribution to hereditary non-polyposis colorectal cancer (HNPCC; Lynch syndrome) was under intense investigation. The human MutS homologue 6 protein (hMSH6), was first reported in 1995 as a G:T binding partner (GTBP) of hMSH2, forming the hMutSα mismatch-binding complex. Signal transduction from each DNA-bound hMutSα complex is accomplished by the hMutLα heterodimer (hMLH1 and hPMS2). Molecular mechanisms and cellular regulation of individual MMR proteins are now areas of intensive research. This review will focus on molecular mechanisms associated with mismatch binding, as well as emerging evidence that MutSα, and in particular, MSH6, is a key protein in MMR-dependent DNA damage response and communication with other DNA repair pathways within the cell. MSH6 is unstable in the absence of MSH2, however it is the DNA lesion-binding partner of this heterodimer. MSH6, but not MSH2, has a conserved Phe-X-Glu motif that recognizes and binds several different DNA structural distortions, initiating different cellular responses. hMSH6 also contains the nuclear localization sequences required to shuttle hMutSα into the nucleus. For example, upon binding to O(6)meG:T, MSH6 triggers a DNA damage response that involves altered phosphorylation within the N-terminal disordered domain of this unique protein. While many investigations have focused on MMR as a post-replication DNA repair mechanism, MMR proteins are expressed and active in all phases of the cell cycle. There is much more to be discovered about regulatory cellular roles that require the presence of MutSα and, in particular, MSH6.


Mutation Research | 2009

DNA mismatch repair efficiency and fidelity are elevated during DNA synthesis in human cells

Michael A. Edelbrock; Saravanan Kaliyaperumal; Kandace J. Williams

DNA mismatch repair (MMR) within human cells is hypothesized to occur primarily at the replication fork. However, experimental models measuring MMR activity at specific phases of the cell cycle and during genomic DNA synthesis are lacking. We have investigated MMR activity within the nuclear environment of HeLa cells after enriching for G1, S and G2/M phase of the cell cycle by centrifugal elutriation. This approach preserves physiologically normal MMR activity in cell populations subdivided into different phases of the cell cycle. Here we have shown that nuclear protein concentration of hMutSalpha and hMutLalpha increases as cells progress into S phase during routine cell culture. MMR activity, as measured by both in vitro and in vivo approaches, increases during S phase to the highest extent within normally growing cells. Both fidelity and activity of MMR are highest on actively replicating templates within intact cells during S phase. The MMR pathway however, is also active at lower levels at other phases of the cell cycle, and on nonreplicating templates.


Journal of Molecular and Cellular Cardiology | 2015

MITF interacts with the SWI/SNF subunit, BRG1, to promote GATA4 expression in cardiac hypertrophy.

Gaurav Mehta; Sivarajan Kumarasamy; Jian Wu; Aaron Walsh; Lijun Liu; Kandace J. Williams; Bina Joe; Ivana L. de la Serna

The transcriptional regulation of pathological cardiac hypertrophy involves the interplay of transcription factors and chromatin remodeling enzymes. The Microphthalmia-Associated Transcription Factor (MITF) is highly expressed in cardiomyocytes and is required for cardiac hypertrophy. However, the transcriptional mechanisms by which MITF promotes cardiac hypertrophy have not been elucidated. In this study, we tested the hypothesis that MITF promotes cardiac hypertrophy by activating transcription of pro-hypertrophy genes through interactions with the SWI/SNF chromatin remodeling complex. In an in vivo model of cardiac hypertrophy, expression of MITF and the BRG1 subunit of the SWI/SNF complex increased coordinately in response to pressure overload. Expression of MITF and BRG1 also increased in vitro when cardiomyocytes were stimulated with angiotensin II or a β-adrenergic agonist. Both MITF and BRG1 were required to increase cardiomyocyte size and activate expression of hypertrophy markers in response to β-adrenergic stimulation. We detected physical interactions between MITF and BRG1 in cardiomyocytes and found that they cooperate to regulate expression of a pro-hypertrophic transcription factor, GATA4. Our data show that MITF binds to the E box element in the GATA4 promoter and facilitates recruitment of BRG1. This is associated with enhanced expression of the GATA4 gene as evidenced by increased Histone3 lysine4 tri-methylation (H3K4me3) on the GATA4 promoter. Thus, in hypertrophic cardiomyoctes, MITF is a key transcriptional activator of a pro-hypertrophic gene, GATA4, and this regulation is dependent upon the BRG1 component of the SWI/SNF complex.


Gene regulation and systems biology | 2013

CEBPG Exhibits Allele-Specific Expression in Human Bronchial Epithelial Cells.

Thomas M. Blomquist; Ronald D. Brown; Erin L. Crawford; Ivana L. de la Serna; Kandace J. Williams; Youngsook Yoon; Dawn-Alita Hernandez; James C. Willey

Inter-individual variation in CCAAT/enhancer binding protein gamma (CEBPG) transcript expression in normal human bronchial epithelial cells (NBEC) is associated with predisposition to lung cancer. We hypothesize that this inter-individual variation is in part explained by cis-acting genetic variation in CEBPG. To test this hypothesis we measured transcript expression derived from each parental copy of CEBPG (ie, allele-specific expression; ASE). There was a significant 2.9-fold higher cell cycle-specific variation in ASE of CEBPG rs2772 A compared to C allele (P < 0.001). In 20% of NBEC samples, CEBPG rs2772 A allele was expressed on average 2.10 fold greater than rs2772 C allele. These data support the hypothesis that genetic variation in linkage disequilibrium with rs2772 influences regulation of CEBPG transcript expression through a trans-effect downstream of RNA polymerase II transcription and confirm that cis-acting genetic variation contributes to inter-individual variation in CEBPG transcript expression in NBEC, which is associated with variation in lung cancer risk.


Mutation Research | 2011

Phosphorylated hMSH6: DNA mismatch versus DNA damage recognition.

Saravanan Kaliyaperumal; Steve M. Patrick; Kandace J. Williams

DNA mismatch repair (MMR) maintains genomic integrity by correction of mispaired bases and insertion-deletion loops. The MMR pathway can also trigger a DNA damage response upon binding of MutSα to specific DNA lesions such as O(6)methylguanine (O(6)meG). Limited information is available regarding cellular regulation of these two different pathways. Within this report, we demonstrate that phosphorylated hMSH6 increases in concentration in the presence of a G:T mismatch, as compared to an O(6)meG:T lesion. TPA, a kinase activator, enhances the phosphorylation of hMSH6 and binding of hMutSα to a G:T mismatch, though not to O(6)meG:T. UCN-01, a kinase inhibitor, decreases both phosphorylation of hMSH6 and binding of hMutSα to G:T and O(6)meG:T. HeLa MR cells, pretreated with UCN-01 and exposed to MNNG, undergo activation of Cdk1 and mitosis despite phosphorylation of Chk1 and inactivating phosphorylation of Cdc25c. These results indicate that UCN-01 may inhibit an alternative cell cycle arrest pathway associated with the MMR pathway that does not involve Cdc25c. In addition, recombinant hMutSα containing hMSH6 mutated at an N-terminal cluster of four phosphoserines exhibits decreased phosphorylation and decreased binding of hMutSα to G:T and O(6)meG:T. Taken together, these results suggest a model in which the amount of phosphorylated hMSH6 bound to DNA is dependent on the presence of either a DNA mismatch or DNA alkylation damage. We hypothesize that both phosphorylation of hMSH6 and total concentration of bound hMutSα are involved in cellular signaling of either DNA mismatch repair or MMR-dependent damage recognition activities.


PLOS ONE | 2013

Major differences between tumor and normal human cell fates after exposure to chemotherapeutic monofunctional alkylator.

Maithili Gupte; Andrew N. Tuck; Vishal Premdev Sharma; Kandace J. Williams

The major dilemma of cancer chemotherapy has always been a double-edged sword, producing resistance in tumor cells and life-threatening destruction of nontumorigenic tissue. Glioblastoma is the most common form of primary brain tumor, with median survival at 14 months after surgery, radiation and temozolomide (monofunctional alkylator) therapy. Treatment failure is most often due to temozolomide-resistant tumor growth. The underlying basis for development of tumor cell resistance to temozolomide instead of death is not understood. Our current results demonstrate that both cervical carcinoma (HeLa MR) and glioblastoma (U251) tumor cells exposed to an equivalent chemotherapeutic concentration of a monofunctional alkylator undergo multiple cell cycles, maintenance of metabolic activity, and a prolonged time to death that involves accumulation of Apoptosis Inducing Factor (AIF) within the nucleus. A minority of the tumor cell population undergoes senescence, with minimal caspase cleavage. Surviving tumor cells are comprised of a very small subpopulation of individual cells that eventually resume proliferation, out of which resistant cells emerge. In contrast, normal human cells (MCF12A) exposed to a monofunctional alkylator undergo an immediate decrease in metabolic activity and subsequent senescence. A minority of the normal cell population undergoes cell death by the caspase cleavage pathway. All cytotoxic events occur within the first cell cycle in nontumorigenic cells. In summation, we have demonstrated that two different highly malignant tumor cell lines slowly undergo very altered cellular and temporal responses to chemotherapeutic monofunctional alkylation, as compared to rapid responses of normal cells. In the clinic, this produces resistance and growth of tumor cells, cytotoxicity of normal cells, and death of the patient.


Cancer Research | 2004

Frontiers of Mutagenesis and DNA Repair A Workshop

Mark R. Kelley; Alan E. Tompkinson; Kandace J. Williams; Norman R. Drinkwater; Victor A. Fung

The Chemical Pathology Study Section, Center for Scientific Review, NIH hosted a 1-day workshop in Ventura, California, in the winter of 2003. There were 32 invited participants including invited speakers. The workshop consisted of three sessions and focused on recent developments in our understanding of the molecular mechanisms of mutagenesis and DNA repair, namely, error-prone DNA polymerases, DNA repair models and DNA repair networks.


DNA Repair | 2008

Rapid induction of chromatin-associated DNA mismatch repair proteins after MNNG treatment.

Allen Schroering; Kandace J. Williams


Experimental Cell Research | 2007

The cell cycle and DNA mismatch repair

Allen Schroering; Michael A. Edelbrock; Timothy J. Richards; Kandace J. Williams

Collaboration


Dive into the Kandace J. Williams's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Vishal Premdev Sharma

Bowling Green State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge