Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kang Shen is active.

Publication


Featured researches published by Kang Shen.


Neuron | 2008

GFP Reconstitution Across Synaptic Partners (GRASP) defines cell contacts and synapses in living nervous systems.

Evan H. Feinberg; Miri K. VanHoven; Andres Bendesky; George J. Wang; Richard D. Fetter; Kang Shen; Cornelia I. Bargmann

The identification of synaptic partners is challenging in dense nerve bundles, where many processes occupy regions beneath the resolution of conventional light microscopy. To address this difficulty, we have developed GRASP, a system to label membrane contacts and synapses between two cells in living animals. Two complementary fragments of GFP are expressed on different cells, tethered to extracellular domains of transmembrane carrier proteins. When the complementary GFP fragments are fused to ubiquitous transmembrane proteins, GFP fluorescence appears uniformly along membrane contacts between the two cells. When one or both GFP fragments are fused to synaptic transmembrane proteins, GFP fluorescence is tightly localized to synapses. GRASP marks known synaptic contacts in C. elegans, correctly identifies changes in mutants with altered synaptic specificity, and can uncover new information about synaptic locations as confirmed by electron microscopy. GRASP may prove particularly useful for defining connectivity in complex nervous systems.


Neuron | 1998

CaMKIIβ Functions As an F-Actin Targeting Module that Localizes CaMKIIα/β Heterooligomers to Dendritic Spines

Kang Shen; Mary N. Teruel; Kala Subramanian; Tobias Meyer

Ca2+/calmodulin-dependent protein kinase II (CaMKII) is a serine/threonine protein kinase that regulates long-term potentiation and other forms of neuronal plasticity. Functional differences between the neuronal CaMKIIalpha and CaMKIIbeta isoforms are not yet known. Here, we use green fluorescent protein-tagged (GFP-tagged) CaMKII isoforms and show that CaMKIIbeta is bound to F-actin in dendritic spines and cell cortex while CaMKIIalpha is largely a cytosolic enzyme. When expressed together, the two isoforms form large heterooligomers, and a small fraction of CaMKIIbeta is sufficient to dock the predominant CaMKIIalpha to the actin cytoskeleton. Thus, CaMKIIbeta functions as a targeting module that localizes a much larger number of CaMKIIalpha isozymes to synaptic and cytoskeletal sites of action.


Cell | 2003

The Immunoglobulin Superfamily Protein SYG-1 Determines the Location of Specific Synapses in C. elegans

Kang Shen; Cornelia I. Bargmann

During nervous system development, neurons form reproducible synapses onto specific targets. Here, we analyze the development of stereotyped synapses of the C. elegans HSNL neuron in vivo. Postsynaptic neurons and muscles were not required for accurate synaptic vesicle clustering in HSNL. Instead, vulval epithelial cells that contact HSNL act as synaptic guidepost cells that direct HSNL presynaptic vesicles to adjacent regions. The mutant syg-1(ky652) has defects in synapse formation that resemble those in animals that lack vulval epithelial cells: HSNL synaptic vesicles fail to accumulate at normal synaptic locations and form ectopic anterior clusters. syg-1 encodes an immunoglobulin superfamily protein that acts in the presynaptic HSNL axon. SYG-1 protein is localized to the site of future synapses, where it initiates synapse formation and localizes synaptic connections in response to the epithelial signal. SYG-1 is related to Drosophila IrreC and vertebrate NEPH1 proteins, which mediate cell-cell recognition in diverse developmental contexts.


Cell | 2004

Synaptic Specificity Is Generated by the Synaptic Guidepost Protein SYG-2 and Its Receptor, SYG-1

Kang Shen; Richard D. Fetter; Cornelia I. Bargmann

Synaptic connections in the nervous system are directed onto specific cellular and subcellular targets. Synaptic guidepost cells in the C. elegans vulval epithelium drive synapses from the HSNL motor neuron onto adjacent target neurons and muscles. Here, we show that the transmembrane immunoglobulin superfamily protein SYG-2 is a central component of the synaptic guidepost signal. SYG-2 is expressed transiently by primary vulval epithelial cells during synapse formation. SYG-2 binds SYG-1, the receptor on HSNL, and directs SYG-1 accumulation and synapse formation to adjacent regions of HSNL. syg-1 and syg-2 mutants have defects in synaptic specificity; the HSNL neuron forms fewer synapses onto its normal targets and forms ectopic synapses onto inappropriate targets. Misexpression of SYG-2 in secondary epithelial cells causes aberrant accumulation of SYG-1 and synaptic markers in HSNL adjacent to the SYG-2-expressing cells. Our results indicate that local interactions between immunoglobulin superfamily proteins can determine specificity during synapse formation.


Nature Neuroscience | 2000

Molecular memory by reversible translocation of calcium/calmodulin-dependent protein kinase II.

Kang Shen; Mary N. Teruel; John H. Connor; Shirish Shenolikar; Tobias Meyer

Synaptic plasticity is thought to be a key process for learning, memory and other cognitive functions of the nervous system. The initial events of plasticity require the conversion of brief electrical signals into alterations of the biochemical properties of synapses that last for much longer than the initial stimuli. Here we show that a regulator of synaptic plasticity, calcium/calmodulin-dependent protein kinase IIα (CaMKII), sequentially translocates to postsynaptic sites, undergoes autophosphorylation and gets trapped for several minutes until its dissociation is induced by secondary autophosphorylation and phosphatase 1 action. Once dissociated, CaMKII shows facilitated translocation for several minutes. This suggests that trapping of CaMKII by its targets and priming of CaMKII translocation may function as biochemical memory mechanisms that change the signaling capacity of synapses.


Cell | 2007

Wnt Signaling Positions Neuromuscular Connectivity by Inhibiting Synapse Formation in C. elegans

Matthew P. Klassen; Kang Shen

Nervous system function is mediated by a precisely patterned network of synaptic connections. While several cell-adhesion and secreted molecules promote the assembly of synapses, the contribution of signals that negatively regulate synaptogenesis is not well understood. We examined synapse formation in the Caenorhabditis elegans motor neuron DA9, whose presynapses are restricted to a specific segment of its axon. We report that the Wnt lin-44 localizes the Wnt receptor lin-17/Frizzled (Fz) to a subdomain of the DA9 axon that is devoid of presynaptic specializations. When this signaling pathway, composed of the Wnts lin-44 and egl-20, lin-17/Frizzled and dsh-1/Dishevelled, is compromised, synapses develop ectopically in this subdomain. Conversely, overexpression of LIN-44 in cells adjacent to DA9 is sufficient to expand LIN-17 localization within the DA9 axon, thereby inhibiting presynaptic assembly. These results suggest that morphogenetic signals can spatially regulate the patterning of synaptic connections by subdividing an axon into discrete domains.


Annual Review of Neuroscience | 2010

Genetics and Cell Biology of Building Specific Synaptic Connectivity

Kang Shen; Peter Scheiffele

The assembly of specific synaptic connections during development of the nervous system represents a remarkable example of cellular recognition and differentiation. Neurons employ several different cellular signaling strategies to solve this puzzle, which successively limit unwanted interactions and reduce the number of direct recognition events that are required to result in a specific connectivity pattern. Specificity mechanisms include the action of contact-mediated and long-range signals that support or inhibit synapse formation, which can take place directly between synaptic partners or with transient partners and transient cell populations. The molecular signals that drive the synaptic differentiation process at individual synapses in the central nervous system are similarly diverse and act through multiple, parallel differentiation pathways. This molecular complexity balances the need for central circuits to be assembled with high accuracy during development while retaining plasticity for local and dynamic regulation.


Cold Spring Harbor Perspectives in Biology | 2010

Guidance molecules in synapse formation and plasticity.

Kang Shen; Christopher W. Cowan

A major goal of modern neuroscience research is to understand the cellular and molecular processes that control the formation, function, and remodeling of chemical synapses. In this article, we discuss the numerous studies that implicate molecules initially discovered for their functions in axon guidance as critical regulators of synapse formation and plasticity. Insights from these studies have helped elucidate basic principles of synaptogenesis, dendritic spine formation, and structural and functional synapse plasticity. In addition, they have revealed interesting dual roles for proteins and cellular mechanisms involved in both axon guidance and synaptogenesis. Much like the dual involvement of morphogens in early cell fate induction and axon guidance, many guidance-related molecules continue to play active roles in controlling the location, number, shape, and strength of neuronal synapses during development and throughout the lifetime of the organism. This article summarizes key findings that link axon guidance molecules to specific aspects of synapse formation and plasticity and discusses the emerging relationship between the molecular and cellular mechanisms that control both axon guidance and synaptogenesis.


Nature Neuroscience | 2006

Hierarchical assembly of presynaptic components in defined C. elegans synapses

Maulik R. Patel; Emily K. Lehrman; Vivian Y. Poon; Justin Gage Crump; Mei Zhen; Cornelia I. Bargmann; Kang Shen

The presynaptic regions of axons accumulate synaptic vesicles, active zone proteins and periactive zone proteins. However, the rules for orderly recruitment of presynaptic components are not well understood. We systematically examined molecular mechanisms of presynaptic development in egg-laying synapses of Caenorhabditis elegans, demonstrating that two scaffolding molecules, SYD-1 and SYD-2, have key roles in presynaptic assembly. SYD-2 (liprin-α) was previously shown to regulate the size and the shape of active zones. We now show that in syd-1 and syd-2 mutants, synaptic vesicles and numerous other presynaptic proteins fail to accumulate at presynaptic sites. SYD-1 and SYD-2 function cell-autonomously at presynaptic terminals, downstream of synaptic specificity molecule SYG-1. SYD-1 is likely to act upstream of SYD-2 to positively regulate its synaptic assembly activity. These data imply a hierarchical organization of presynaptic assembly, in which transmembrane specificity molecules initiate synaptogenesis by recruiting a few key scaffolding proteins, which in turn assemble other presynaptic components.


Journal of Neuroscience Methods | 1999

A versatile microporation technique for the transfection of cultured CNS neurons

Mary N. Teruel; Thomas A. Blanpied; Kang Shen; George J Augustine; Tobias Meyer

The application of molecular techniques to cultured central nervous system (CNS) neurons has been limited by a lack of simple and efficient methods to introduce macromolecules into their cytosol. We have developed an electroporation technique that efficiently transfers RNA, DNA and other large membrane-impermeant molecules into adherent hippocampal neurons. Microporation allowed the use of either in vitro transcribed RNA or cDNA to transfect neurons. While RNA transfection yielded a higher percentage of transfected neurons and produced quantitative co-expression of two proteins, DNA transfection yielded higher levels of protein expression. Dextran-based calcium indicators also were efficiently delivered into the cytosol. Microporated neurons appear to survive poration quite well, as indicated by their morphological integrity, electrical excitability, ability to produce action potential-evoked calcium signals, and intact synaptic transmission. Furthermore, green fluorescent protein (GFP)-tagged marker proteins were expressed and correctly localized to the cytosol, plasma membrane, or endoplasmic reticulum. The microporation method is efficient, convenient, and inexpensive: macromolecules can be introduced into most adherent neurons in a 3 mm2 surface area while requiring as little as 1 microl of the material to be introduced. We conclude that the microporation of macromolecules is a versatile approach to investigate signaling, secretion, and other processes in CNS neurons.

Collaboration


Dive into the Kang Shen's collaboration.

Top Co-Authors

Avatar

D. H. Lu

SLAC National Accelerator Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

C. Kim

Stanford University

View shared research outputs
Top Co-Authors

Avatar

Celine I. Maeder

Howard Hughes Medical Institute

View shared research outputs
Top Co-Authors

Avatar

Xintong Dong

Howard Hughes Medical Institute

View shared research outputs
Top Co-Authors

Avatar

Zhi-Xun Shen

SLAC National Accelerator Laboratory

View shared research outputs
Researchain Logo
Decentralizing Knowledge