Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kangfu Yu is active.

Publication


Featured researches published by Kangfu Yu.


Theoretical and Applied Genetics | 2003

Development and characterization of simple sequence repeat (SSR) markers and their use in determining relationships among Lycopersicon esculentum cultivars.

C. He; Vaino Poysa; Kangfu Yu

Abstract.The simple sequence repeat (SSR) or microsatellite marker is currently the preferred molecular marker due to its highly desirable properties. The aim of this study was to develop and characterize more SSR markers because the number of SSR markers currently available in tomato is very limited. Five hundred DNA sequences of tomato were searched for SSRs and analyzed for the design of PCR primers. Of the 158 pairs of SSR primers screened against a set of 19 diverse tomato cultivars, 129 pairs produced the expected DNA fragments in their PCR products, and 65 of them were polymorphic with the polymorphism information content (PIC) ranging from 0.09 to 0.67. Among the polymorphic loci, 2–6 SSR alleles were detected for each locus with an average of 2.7 alleles per locus; 49.2% of these loci had two alleles and 33.8% had three alleles. The vast majority (93.8%) of the microsatellite loci contained di- or tri-nucleotide repeats and only 6.2% had tetra- and penta-nucleotide repeats. It was also found that TA/AT was the most frequent type of repeat, and the polymorphism information content (PIC) was positively correlated with the number of repeats. The set of 19 tomato cultivars were clustered based on the banding patterns generated by the 65 polymorphic SSR loci. Since the markers developed in this study are primarily from expressed sequences, they can be used not only for molecular mapping, cultivar identification and marker-assisted selection, but for identifying gene-trait relations in tomato.


Archive | 2008

Genomics of Phaseolus Beans, a Major Source of Dietary Protein and Micronutrients in the Tropics

Paul Gepts; Francisco J.L. Aragão; Everaldo de Barros; Matthew W. Blair; R. P. V. Brondani; William J. Broughton; Incoronata Galasso; Gina Hernández; James Kami; Patricia Lariguet; Phillip E. McClean; Maeli Melotto; Phillip N. Miklas; Peter K. Pauls; Andrea Pedrosa-Harand; Timothy G. Porch; Federico Sánchez; Francesca Sparvoli; Kangfu Yu

Common bean is grown and consumed principally in developing countries in Latin America, Africa, and Asia. It is largely a subsistence crop eaten by its producers and, hence, is underestimated in production and commerce statistics. Common bean is a major source of dietary protein, which complements carbohydrate-rich sources such as rice, maize, and cassava. It is also a rich source of minerals, such as iron and zinc, and certain vitamins. Several large germplasm collections have been established, which contain large amounts of genetic diversity, including the five domesticated Phaseolus species and wild species, as well as an incipient stock collection. The genealogy and genetic diversity of P. vulgaris are among the best known in crop species through the systematic use of molecular markers, from seed proteins and isozymes to simple sequence repeats, and DNA sequences. Common bean exhibits a high level of genetic diversity, compared with other selfing species. A hierarchical organization into gene pools and ecogeographic races has been established. There are over 15 mapping populations that have been established to study the inheritance of agronomic traits in different locations. Most linkage maps have been correlated with the core map established in the BAT93 x Jalo EEP558 cross, which includes several hundreds of markers, including Restriction Fragment Length Polymorphisms, Random Amplified Polymorphic DNA, Amplified Fragment Length Polymorphisms, Short Sequence Repeats, Sequence Tagged Sites, and Target Region Amplification Polymorphisms. Over 30 individual genes for disease resistance and some 30 Quantitative Trait Loci for a broad range of agronomic traits have been tagged. Eleven BAC libraries have been developed in genotypes that represent key steps in the evolution before and after domestication of common bean, a unique resource among crops. Fluorescence in situ hybridization provides the first links between chromosomal and genetic maps. A gene index based on some P. vulgaris 21,000 expressed sequence tags (ESTs) has been developed. ESTs were developed from different genotypes, organs, and physiological conditions. They resolve currently in some 6,500–6,800 singletons and 2,900 contigs. An additional 20,000 embryonic P. coccineus ESTs provides an additional resource. Some 1,500 M2 Targeting Local Lesions In Genomes populations exist currently. Finally, transformation methods by biolistics and Agrobacterium have been developed, which can be applied for genetic engineering. Root transformation via A. rhizogenes is also possible. Thus, the Phaseomics community has laid a solid foundation towards its ultimate goal, namely the sequencing of the Phaseolus genome. These genomic resources are a much-needed source of additional markers of known map location for marker-assisted selection and the accelerated improvement of common bean cultivars.


BMC Plant Biology | 2011

Association mapping of common bacterial blight resistance QTL in Ontario bean breeding populations

Chun Shi; Alireza Navabi; Kangfu Yu

BackgroundCommon bacterial blight (CBB), incited by Xanthomonas axonopodis pv. phaseoli (Xap), is a major yield-limiting factor of common bean (Phaseolus vulgaris L.) production around the world. Host resistance is practically the most effective and environmentally-sound approach to control CBB. Unlike conventional QTL discovery strategies, in which bi-parental populations (F2, RIL, or DH) need to be developed, association mapping-based strategies can use plant breeding populations to synchronize QTL discovery and cultivar development.ResultsA population of 469 dry bean lines of different market classes representing plant materials routinely developed in a bean breeding program were used. Of them, 395 lines were evaluated for CBB resistance at 14 and 21 DAI (Days After Inoculation) in the summer of 2009 in an artificially inoculated CBB nursery in south-western Ontario. All lines were genotyped using 132 SNPs (Single Nucleotide Polymorphisms) evenly distributed across the genome. Of the 132 SNPs, 26 SNPs had more than 20% missing data, 12 SNPs were monomorphic, and 17 SNPs had a MAF (Minor Allelic Frequency) of less than 0.20, therefore only 75 SNPs were used for association study, based on one SNP per locus. The best possible population structure was to assign 36% and 64% of the lines into Andean and Mesoamerican subgroups, respectively. Kinship analysis also revealed complex familial relationships among all lines, which corresponds with the known pedigree history. MLM (Mixed Linear Model) analysis, including population structure and kinship, was used to discover marker-trait associations. Eighteen and 22 markers were significantly associated with CBB rating at 14 and 21 DAI, respectively. Fourteen markers were significant for both dates and the markers UBC420, SU91, g321, g471, and g796 were highly significant (p ≤ 0.001). Furthermore, 12 significant SNP markers were co-localized with or close to the CBB-QTLs identified previously in bi-parental QTL mapping studies.ConclusionsThis study demonstrated that association mapping using a reasonable number of markers, distributed across the genome and with application of plant materials that are routinely developed in a plant breeding program can detect significant QTLs for traits of interest.


Molecular Biology Reports | 2012

Selection of reference genes for normalization of qRT-PCR analysis of differentially expressed genes in soybean exposed to cadmium.

Yi Wang; Kangfu Yu; Vaino Poysa; Chun Shi; Yong-Hong Zhou

Accurate normalization of gene expression with qRT-PCR depends on the use of appropriate reference genes (RGs) for the species under a given set of experimental conditions. Multiple RGs for gene expression analysis of soybean exposed to heavy metal stress treatment have not been reported in the literature. In this study, we evaluated the expression stability of ten candidate RGs in leaves, roots and stems of two soybean cultivars exposed to cadmium (Cd). Based on the geNorm and NormFinder analysis, ACT3, PP2A, ELF1B and F-box were the most stable RGs in these gene expression studies. In contrast, G6PD, UBC2, TUB, and ELF1A were the most variable ones and should not be used as RGs in these experimental conditions.


Phytopathology | 2012

Application of Image Analysis in Studies of Quantitative Disease Resistance, Exemplified Using Common Bacterial Blight–Common Bean Pathosystem

Weilong Xie; Kangfu Yu; K. Peter Pauls; Alireza Navabi

The effectiveness of image analysis (IA) compared with an ordinal visual scale, for quantitative measurement of disease severity, its application in quantitative genetic studies, and its effect on the estimates of genetic parameters were investigated. Studies were performed using eight backcross-derived families of common bean (Phaseolus vulgaris) (n = 172) segregating for the molecular marker SU91, known to be associated with a quantitative trait locus (QTL) for resistance to common bacterial blight (CBB), caused by Xanthomonas campestris pv. phaseoli and X. fuscans subsp. fuscans. Even though both IA and visual assessments were highly repeatable, IA was more sensitive in detecting quantitative differences between bean genotypes. The CBB phenotypic difference between the two SU91 genotypic groups was consistently more than fivefold for IA assessments but generally only two- to threefold for visual assessments. Results suggest that the visual assessment results in overestimation of the effect of QTL in genetic studies. This may have been caused by lack of additivity and uneven intervals of the visual scale. Although visual assessment of disease severity is a useful tool for general selection in breeding programs, assessments using IA may be more suitable for phenotypic evaluations in quantitative genetic studies involving CBB resistance as well as other foliar diseases.


Molecular Biology Reports | 2011

Identification of candidate genes associated with CBB resistance in common bean HR45 (Phaseolus vulgaris L.) using cDNA-AFLP

Chun Shi; Sarita Chaudhary; Kangfu Yu; S. J. Park; Alireza Navabi; Phillip E. McClean

Common bacterial blight (CBB), incited by Xanthomonas axonopodis pv. phaseoli (Xap), is a serious seed-borne disease of common bean (Phaseolus vulgaris L.) in both temperate and tropical production zones. The line HR45 is highly resistant to Xap infection on leaves and pods in both field and greenhouse. To understand the molecular mechanisms underlying CBB resistance in HR45, cDNA-amplified fragment length polymorphism (AFLP) technique was used to identify the genes that are differentially expressed in the leaves of HR45 at different time-periods after inoculation. Selective amplifications with 34 primer combinations allowed the visualization of 2,448 transcript-derived fragments (TDFs) in infected leaves, and 259 (10.6%) of them were differentially expressed TDFs (DE-TDFs). Seventy-seven of the DE-TDFs were cloned and sequenced. Thirty-nine of the 77 (50.6%) DE-TDFs representing bean transcripts were not previously reported in any EST database. The expression patterns of 10 representative DE-TDFs were further confirmed by real-time RT-PCR. BLAST analysis suggested that 40% (31 of 77) of the DE-TDFs were homologous to the genes related to metabolism, photosynthesis, and cellular transport, whereas 28% (22 of 77) of the DE-TDFs showed homology to the genes involved in defence response, response to stimulus, enzyme regulation, and transcription regulation. Thus, the 22 pathogenesis-related DE-TDFs were selected as potential functional candidate genes (FCGs) in association with CBB resistance. Meanwhile, six of the DE-TDFs (1FCG and five other DE-TDFs) were in silico mapped to the distal region of the bean linkage group B6 (the genomic location containing the major CBB resistance QTL in HR45) and, therefore, were considered as positional candidate genes (PCGs). This study represents a first step towards the discovery of bean genes expressed upon Xap infection. This information will be useful for elucidating the molecular basis of the resistance response process and identifying the genes that underlie the CBB-resistance.


Frontiers in Plant Science | 2013

A comparison of the molecular organization of genomic regions associated with resistance to common bacterial blight in two Phaseolus vulgaris genotypes

Gregory E. Perry; Claudia DiNatale; Weilong Xie; Alireza Navabi; Yarmilla Reinprecht; William L. Crosby; Kangfu Yu; Chun Shi; Peter K. Pauls

Resistance to common bacterial blight, caused by Xanthomonas axonopodis pv. phaseoli, in Phaseolus vulgaris is conditioned by several loci on different chromosomes. Previous studies with OAC-Rex, a CBB-resistant, white bean variety of Mesoamerican origin, identified two resistance loci associated with the molecular markers Pv-CTT001 and SU91, on chromosome 4 and 8, respectively. Resistance to CBB is assumed to be derived from an interspecific cross with Phaseolus acutifolius in the pedigree of OAC-Rex. Our current whole genome sequencing effort with OAC-Rex provided the opportunity to compare its genome in the regions associated with CBB resistance with the v1.0 release of the P. vulgaris line G19833, which is a large seeded bean of Andean origin, and (assumed to be) CBB susceptible. In addition, the genomic regions containing SAP6, a marker associated with P. vulgaris-derived CBB-resistance on chromosome 10, were compared. These analyses indicated that gene content was highly conserved between G19833 and OAC-Rex across the regions examined (>80%). However, fifty-nine genes unique to OAC Rex were identified, with resistance gene homologues making up the largest category (10 genes identified). Two unique genes in OAC-Rex located within the SU91 resistance QTL have homology to P. acutifolius ESTs and may be potential sources of CBB resistance. As the genomic sequence assembly of OAC-Rex is completed, we expect that further comparisons between it and the G19833 genome will lead to a greater understanding of CBB resistance in bean.


Biologia Plantarum | 2015

Cloning and characterization of four novel SnRK2 genes from Triticum polonicum

Yan Wang; Xiaolu Wang; Mengxue Gu; Hou-Yang Kang; Jian Zeng; Xing Fan; Li-Na Sha; Huaiyu Zhang; Kangfu Yu; Y. H. Zhou

SnRK2 are plant-specific serine/threonine kinases that are involved in plant responses to abiotic stresses. In this study, four novel genes SnRK2s:TpSnRK2.11, TpSnRK2.2, TpSnRK2.5, and TpSnRK2.10 from dwarf Polish wheat (Triticum polonicum L.) were characterized and classified into three groups. TpSnRK2.5 and TpSnRK2.11 were members of group 1; TpSnRK2.2 was member of group 2; TpSnRK2.10 belonged to group 3. The expression of TpSNRK2.2 was strongly regulated by polyethylene glycol (PEG), NaCl, and cold in roots and leaves, as well as by ABA in leaves. The transcript of TpSnRK2.5 was intensely induced by all the treatments in roots and leaves. The distinct expression patterns of TpSnRK2.10 indicate that this gene was very sensitive to ABA and NaCl, less sensitive to cold and PEG. The transcript of TpSnRK2.11 was activated significantly by PEG, NaCl, and cold, but weakly by ABA. Our results indicate that these four genes were probably involved in wheat responses to different abiotic stresses in different tissues.


The Scientific World Journal | 2014

Cadmium Treatment Alters the Expression of Five Genes at the Cda1 Locus in Two Soybean Cultivars [Glycine Max (L.) Merr]

Yi Wang; Xue Xiao; Tiequan Zhang; Hou-Yang Kang; Jian Zeng; Xing Fan; Li-Na Sha; Hai-Qin Zhang; Kangfu Yu; Yonghong Zhou

Westag 97 has larger capacity of Cd accumulation in roots which prevents Cd from translocating into stems and leaves; conversely, AC Hime has smaller capacity of Cd accumulation in roots; more Cd is transported into stems and leaves. The different capacity of Cd in roots between Westag 97 and AC Hime causes the different Cd concentration in seeds. Meanwhile, according to the different expression levels of RSTK, ISCP, and H+-ATPase between Westag 97 and AC Hime, RSTK may be involved in transporting Cd into stems and leaves; H+-ATPase may be correlated to the capacity of Cd accumulation in roots; and Cd caused some changes of fundamental life process which leaded to the different expression patterns of ISCP between Westag 97 and AC Hime.


Theoretical and Applied Genetics | 2012

Molecular analysis of glycinin genes in soybean mutants for development of gene-specific markers.

Souframanien Jegadeesan; Kangfu Yu; Lorna Woodrow; Yi Wang; Chun Shi; Vaino Poysa

Soybean mutant lines that differ in 11S glycinin and 7S β-conglycinin seed storage protein subunit compositions were developed. These proteins have significant influence on tofu quality. The molecular mechanisms underlying the mutant lines are unknown. In this study, gene-specific markers for five of the glycinin genes (Gy1 to Gy5) were developed using three 11S null lines, two A4 null Japanese cultivars, Enrei and Raiden, and a control cultivar, Harovinton. Whereas gene-specific primers produced the appropriate products in the control cultivar for the Gy1, Gy2, Gy3 and Gy5 genes, they did not amplify in mutants missing the A1aB2, A2B1a, A1b B1b, and A3B4 subunits. However, ecotype targeting induced local lesions in genomes (EcoTILLING) and sequencing analysis revealed that the absence of the A4 peptide in the mutants is due to the same point mutation as that in Enrei and Raiden. Selection efficiency of the gene-specific primer pairs was tested using a number of breeding lines segregating for the different subunits. Primer pairs specific to each of the Gy1, Gy2, Gy3, and Gy5 genes can be used to detect the presence or absence of amplification in normal or mutant lines. The Gy4 null allele can be selected for by temperature-switch PCR (TS-PCR) for identification of the A4 (G4) null genotypes. In comparison to protein analysis by SDS-PAGE, gene-specific markers are easier, faster and more accurate for analysis, they do not have to use seed, and can be analyzed at any plant growth stage for marker-assisted selection.

Collaboration


Dive into the Kangfu Yu's collaboration.

Top Co-Authors

Avatar

Vaino Poysa

Agriculture and Agri-Food Canada

View shared research outputs
Top Co-Authors

Avatar

Chun Shi

Agriculture and Agri-Food Canada

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

S. J. Park

Agriculture and Agri-Food Canada

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hou-Yang Kang

Sichuan Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Li-Na Sha

Sichuan Agricultural University

View shared research outputs
Top Co-Authors

Avatar

Lorna Woodrow

Agriculture and Agri-Food Canada

View shared research outputs
Top Co-Authors

Avatar

Xing Fan

Sichuan Agricultural University

View shared research outputs
Researchain Logo
Decentralizing Knowledge