Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kangsheng Li is active.

Publication


Featured researches published by Kangsheng Li.


Current Opinion in Neurology | 2010

Acute encephalopathy and encephalitis caused by influenza virus infection.

Gefei F Wang; Weizhong Li; Kangsheng Li

Purpose of reviewInfluenza-associated acute encephalopathy/encephalitis (IAE) is an uncommon but serious complication with high mortality and neurological sequelae. This review discusses recent progress in IAE research for a better understanding of the disease features, populations, outcomes, diagnosis, and pathogenesis. Recent findingsIn recent years, many IAE cases were reported from many countries, including Japan, Canada, Australia, Austria, the Netherlands, United States, Sweden, and other countries and regions. During the novel influenza A/H1N1 pandemic, many IAE cases with A/H1N1 infection in children were reported, particularly in those hospitalized with influenza infection. Pathogenesis of IAE is not fully understood but may involve viral invasion of the CNS, proinflammatory cytokines, metabolic disorders, or genetic susceptibility. An autosomal dominant viral acute necrotizing encephalopathy (ANE) was recently found to have missense mutations in the gene Ran-binding 2 (RANBP2). Another recurrent ANE case following influenza A infection was also reported in a genetically predisposed family with an RANBP2 mutation. SummaryAlthough IAE is uncommon, compared with the high incidence of influenza infection, it is severe. However, this complication is not duly recognized by health practitioners. Recent advances highlight the threat of this complication, which will help us to have a better understanding of IAE.


Cellular & Molecular Immunology | 2008

Apoptosis and Proinflammatory Cytokine Responses of Primary Mouse Microglia and Astrocytes Induced by Human H1N1 and Avian H5N1 Influenza Viruses

Gefei Wang; Juan Zhang; Weizhong Li; Gang Xin; Yun Su; Yuan‐Li Gao; Heng Zhang; Gui-Mei Lin; Xiaoyang Jiao; Kangsheng Li

Patients with an influenza virus infection can be complicated by acute encephalopathy and encephalitis. To investigate the immune reactions involved in the neurocomplication, mouse microglia and astrocytes were isolated, infected with human H1N1 and avian H5N1 influenza viruses, and examined for their immune responses. We observed homogeneously distributed viral receptors, sialic acid (SA)-α2,3-Galactose (Gal) and SA-α2,6-Gal, on microglia and astrocytes. Both viruses were replicative and productive in microglia and astrocytes. Virus-induced apoptosis and cytopathy in infected cells were observed at 24 h post-infection (p.i.). Expression of IL-1β, IL-6 and TNF-α mRNA examined at 6 h and 24 h p.i. was up-regulated, and their expression levels were considerably higher in H5N1 infection. The amounts of secreted proinflammatory IL-1β, IL-6 and TNF-α at 6 h and 24 h p.i. were also induced, with greater induction by H5N1 infection. This study is the first demonstration that both human H1N1 and avian H5N1 influenza viruses can infect mouse microglia and astrocytes and induce apoptosis, cytopathy, and proinflammatory cytokine production in them in vitro. Our results suggest that the direct cellular damage and the consequences of immunopathological injury in the CNS contribute to the influenza viral pathogenesis.


PLOS ONE | 2013

Drug screening for autophagy inhibitors based on the dissociation of Beclin1-Bcl2 complex using BiFC technique and mechanism of eugenol on anti-influenza A virus activity.

Jian-Ping Dai; Xiangfeng Zhao; Jun Zeng; Qian-Ying Wan; Jiacai Yang; Wei-Zhong Li; Xiao-Xuan Chen; Gefei Wang; Kangsheng Li

Autophagy is involved in many human diseases, such as cancer, cardiovascular disease and virus infection, including human immunodeficiency virus (HIV), hepatitis C virus (HCV), influenza A virus (IAV) and coxsackievirus B3/B4 (CVB3/B4), so a drug screening model targeting autophagy may be very useful for the therapy of these diseases. In our study, we established a drug screening model based on the inhibition of the dissociation of Beclin1-Bcl2 heterodimer, an important negative regulator of autophagy, using bimolecular fluorescence complementation (BiFC) technique for developing novel autophagy inhibitors and anti-IAV agents. From 86 examples of traditional Chinese medicines, we found Syzygium aromaticum L. had the best activity. We then determined the anti-autophagy and anti-IAV activity of eugenol, the major active compound of Syzygium aromaticum L., and explored its mechanism of action. Eugenol could inhibit autophagy and IAV replication, inhibited the activation of ERK, p38MAPK and IKK/NF-κB signal pathways and antagonized the effects of the activators of these pathways. Eugenol also ameliorated the oxidative stress and inhibited the expressions of autophagic genes. We speculated that the mechanism underlying might be that eugenol inhibited the oxidative stress and the activation of ERK1/2, p38MAPK and IKK/NF-κB pathways, subsequently inhibited the dissociation of Beclin1-Bcl2 heterodimer and autophagy, and finally impaired IAV replication. These results might conversely display the reasonableness of the design of our screening model. In conclusion, we have established a drug screening model for developing novel autophagy inhibitor, and find eugenol as a promising inhibitor for autophagy and IAV infection.


Journal of Nephrology | 2013

Serum BAFF is elevated in patients with IgA nephropathy and associated with clinical and histopathological features.

Gang Xin; Wei Shi; Li-Xia Xu; Yun Su; Li-Jun Yan; Kangsheng Li

BACKGROUND B-cell-activating factor belonging to the tumor necrosis factor family (BAFF) has been found to have the function of activating B cells and participating in the class switching of B cells; however, its clinical application needs further study. In the present study, the serum BAFF levels of patients with IgA nephropathy (IgAN) with different histopathological phenotypes were measured. METHODS Levels of serum BAFF in 153 patients with IgAN, 55 healthy controls and 20 disease controls were recorded using commercially available ELISA kits. Their correlations with clinical and histopathological features of patients with IgAN were further evaluated. RESULTS Levels of serum BAFF in patients with IgAN were significantly higher than in controls. Serum BAFF levels were significantly higher in patients with mesangial hypercellularity and segmental glomerulosclerosis than in those without. Serum BAFF levels were associated with the severity of tubular atrophy/interstitial fibrosis. Serum BAFF levels were significantly positively correlated with estimated glomerular filtration rate and serum creatinine. Patients with elevated serum BAFF levels showed significantly greater severity in clinical and histopathological stages. CONCLUSION Levels of serum BAFF were elevated in patients with IgAN and were associated with clinical and pathological features of the disease. Serum BAFF levels could be a noninvasive biomarker for monitoring disease severity of IgAN.


PLOS ONE | 2012

A Drug Screening Method Based on the Autophagy Pathway and Studies of the Mechanism of Evodiamine against Influenza A Virus

Jian-Ping Dai; Wei-Zhong Li; Xiangfeng Zhao; Gefei Wang; Jiacai Yang; Lin Zhang; Xiao-Xuan Chen; Yanxuan Xu; Kangsheng Li

In this research, we have established a drug screening method based on the autophagy signal pathway using the bimolecular fluorescence complementation - fluorescence resonance energy transfer (BiFC-FRET) technique to develop novel anti-influenza A virus (IAV) drugs. We selected Evodia rutaecarpa Benth out of 83 examples of traditional Chinese medicine and explored the mechanisms of evodiamine, the major active component of Evodia rutaecarpa Benth, on anti-IAV activity. Our results showed that evodiamine could significantly inhibit IAV replication, as determined by a plaque inhibition assay, an IAV vRNA promoter luciferase reporter assay and the Sulforhodamine B method using cytopathic effect (CPE) reduction. Additionally, evodiamine could significantly inhibit the accumulation of LC3-II and p62, and the dot-like aggregation of EGFP-LC3. This compound also inhibited the formation of the Atg5-Atg12/Atg16 heterotrimer, the expressions of Atg5, Atg7 and Atg12, and the cytokine release of TNF-α, IL-1β, IL-6 and IL-8 after IAV infection. Evodiamine inhibited IAV-induced autophagy was also dependent on its action on the AMPK/TSC2/mTOR signal pathway. In conclusion, we have established a new drug screening method, and selected evodiamine as a promising anti-IAV compound.


Journal of Biomolecular Screening | 2012

High-throughput screening for anti-influenza A virus drugs and study of the mechanism of procyanidin on influenza A virus-induced autophagy.

Jian-Ping Dai; Gefei Wang; Wei-Zhong Li; Lin Zhang; Jiacai Yang; Xiangfeng Zhao; Xiao-Xuan Chen; Yanxuan Xu; Kangsheng Li

In this research, we have established a high-throughput screening (HTS) platform based on the influenza A virus (IAV) vRNA promoter. Using this HTS platform, we selected 35 medicinal plants out of 83 examples of traditional Chinese medicine and found that 7 examples had not been reported. After examining many previous reports, we found that Vaccinium angustifolium Ait., Vitis vinifera L, and Cinnamomum cassia Presl had a common active compound, procyanidin, and then determined the anti-IAV effect of procyanidin and explored its mechanism of action. With a plaque inhibition assay and a time-of-addition experiment, we found that procyanidin could inhibit the IAV replication at several stages of the life cycle. In the Western blot and EGFP-LC3 localization assays, we found that procyanidin could inhibit the accumulation of LC3II and the dot-like aggregation of EGFP-LC3. In the RT-PCR and Western blot assays, we found procyanidin could inhibit the expression of Atg7, Atg5, and Atg12. Finally, by the bimolecular fluorescence complementation–fluorescence resonance energy transfer and co-immunoprecipitation assays, we found that procyanidin could inhibit the formation of the Atg5-Atg12/Atg16 heterotrimer and the dissociation of the beclin1/bcl2 heterodimer. In conclusion, we have established an HTS platform and identified procyanidin as a novel and promising anti-IAV agent.


Cellular & Molecular Immunology | 2010

Effects of NS1 variants of H5N1 influenza virus on interferon induction, TNFα response and p53 activity

Weizhong Li; Gefei Wang; Heng Zhang; Gang Xin; Dangui Zhang; Jun Zeng; Xiao-Xuan Chen; Yanxuan Xu; Youhong Cui; Kangsheng Li

Non-structural protein 1 (NS1) is an important virulence factor of the highly pathogenic H5N1 avian influenza virus. A five-amino-acid (5 aa) deletion at position 80–84 and an aspartic acid to glutamic acid substitution at position 92 (D92E) are two major NS1 mutations that are highly correlated with enhanced virulence. To investigate the effect of these mutations in H5N1 virulence, three H5N1-NS1 variants were constructed: NS51 (lacking 5 aa at position 80–84), NS51(I) (carrying a 5-aa insertion at position 80–84) and NS51(IM) (carrying both the 5-aa insertion and the D92E mutation). We examined the effects of these mutations on interferon (IFN) induction, tumor-necrosis factor (TNF)α response, p53 activity and apoptosis. We found that the D92E mutation eliminated NS1s repressive effect on IFN induction, while the 5-aa deletion resulted in enhanced resistance to TNFα responses. We also observed that all three variants exhibited a similar suppressive effect on p53 transcriptional activity, although none of them significantly influenced apoptosis of host cells. Our findings shed new light on the role of NS1 in the pathogenicity of H5N1 virus.


Virology Journal | 2011

The distinct binding properties between avian/human influenza A virus NS1 and Postsynaptic density protein-95 (PSD-95), and inhibition of nitric oxide production

Heng Zhang; Weizhong Li; Gefei Wang; Yun Su; Chi Zhang; Xiao-Xuan Chen; Yanxuan Xu; Kangsheng Li

BackgroundThe NS1 protein of influenza A virus is able to bind with many proteins that affect cellular signal transduction and protein synthesis in infected cells. The NS1 protein consists of approximately 230 amino acids and the last 4 amino acids of the NS1 C-terminal form a PDZ binding motif. Postsynaptic Density Protein-95 (PSD-95), which is mainly expressed in neurons, has 3 PDZ domains. We hypothesise that NS1 binds to PSD-95, and this binding is able to affect neuronal function.ResultWe conducted a yeast two-hybrid analysis, GST-pull down assays and co-immunoprecipitations to detect the interaction between NS1 and PSD-95. The results showed that NS1 of avian influenza virus H5N1 (A/chicken/Guangdong/1/2005) is able to bind to PSD-95, whereas NS1 of human influenza virus H1N1 (A/Shantou/169/2006) is unable to do so. The results also revealed that NS1 of H5N1 significantly reduces the production of nitric oxide (NO) in rat hippocampal neurons.ConclusionIn summary, our study indicates that NS1 of influenza A virus can bind with neuronal PSD-95, and the avian H5N1 and human H1N1 influenza A viruses possess distinct binding properties.


PLOS ONE | 2014

PI3K/Akt signaling pathway modulates influenza virus induced mouse alveolar macrophage polarization to M1/M2b.

Xiangfeng Zhao; Jian-Ping Dai; Xuejun Xiao; Liqi Wu; Jun Zeng; Jiangtao Sheng; Jinghua Su; Xiao-Xuan Chen; Gefei Wang; Kangsheng Li

Macrophages polarized to M1 (pro-inflammation) or M2 (anti-inflammation) phenotypes in response to environmental signals. In this study, we examined the polarization of alveolar macrophage (AM), following induction by different influenza virus strains (ST169 (H1N1), ST602 (H3N2) and HKG9 (H9N2)). Macrophages from other tissues or cell line exert alternative responding pattern, and AM is necessary for investigating the respiratory system. AM polarized toward the M1 phenotype after 4 hours of infection by all three virus strains, and AM to presented M2b phenotype after 8 hours induction, and immunosuppressive phenotype after 24 hours of induction. Protein expression assay showed similar results as the gene expression analysis for phenotype verification. The ELISA assay showed that TNF-α secretion was up-regulated after 4 and 8 hours of infection by influenza viruses, and it returned to basal levels after 24 hours of infection. IL-10 expression was elevated after 8 and 24 hours of infection. Immunofluorescence showed that iNOS expression was up-regulated but not Arg1 expression. Influenza virus notably increased phospho-Akt but not phospho-Erk1/2 or phospho-p38, and the AM polarization pattern have been changed by LY294002 (PI3K inhibitor). In conclusion, our results demonstrate the dynamic polarization of AM induced by influenza viruses, and suggested that PI3K/Akt signaling pathway modulates AM polarization to M1/M2b.


Veterinary Research | 2012

Inability of NS1 protein from an H5N1 influenza virus to activate PI3K/Akt signaling pathway correlates to the enhanced virus replication upon PI3K inhibition

Wei-Zhong Li; Gefei Wang; Heng Zhang; Yanqin Shen; Jian-Ping Dai; Liqi Wu; Jianxiang Zhou; Zhiwu Jiang; Kangsheng Li

Phosphatidylinositol 3-kinase (PI3K)/Akt signaling pathway, activated during influenza A virus infection, can promote viral replication via multiple mechanisms. Direct binding of NS1 protein to p85β subunit of PI3K is required for activation of PI3K/Akt signaling. Binding and subsequent activation of PI3K is believed to be a conserved character of influenza A virus NS1 protein. Sequence variation of NS1 proteins in different influenza A viruses led us to investigate possible deviation from the conservativeness.In the present study, NS1 proteins from four different influenza A virus subtypes/strains were tested for their ability to bind p85β subunit of PI3K and to activate PI3K/Akt. All NS1 proteins efficiently bound to p85β and activated PI3K/Akt, with the exception of NS1 protein from an H5N1 virus (A/Chicken/Guangdong/1/05, abbreviated as GD05), which bound to p85β but failed to activate PI3K/Akt, implying that as-yet-unidentified domain(s) in NS1 may alternatively mediate the activation of PI3K. Moreover, PI3K inhibitor, LY294002, did not suppress but significantly increased the replication of GD05 virus.Our study indicates that activation of PI3K/Akt by NS1 protein is not highly conserved among influenza A viruses and inhibition of the PI3K/Akt pathway as an anti-influenza strategy may not work for all influenza A viruses.

Collaboration


Dive into the Kangsheng Li's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge