Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kanji Furuya is active.

Publication


Featured researches published by Kanji Furuya.


Nature Cell Biology | 2001

Mrc1 transduces signals of DNA replication stress to activate Rad53

Annette A. Alcasabas; Alexander J. Osborn; Jeff Bachant; Fenghua Hu; Petra J. H. Werler; Kristine Bousset; Kanji Furuya; John F. X. Diffley; Antony M. Carr; Stephen J. Elledge

Cells experiencing DNA replication stress activate a response pathway that delays entry into mitosis and promotes DNA repair and completion of DNA replication. The protein kinases ScRad53 and SpCds1 (in bakers and fission yeast, respectively) are central to this pathway. We describe a conserved protein Mrc1, mediator of the replication checkpoint, required for activation of ScRad53 and SpCds1 during replication stress. mrc1 mutants are sensitive to hydroxyurea and have a checkpoint defect similar to rad53 and cds1 mutants. Mrc1 may be the replicative counterpart of Rad9 and Crb2, which are required for activating ScRad53 and Chk1 in response to DNA damage.


Science | 2011

Comparative Functional Genomics of the Fission Yeasts

Nicholas Rhind; Zehua Chen; Moran Yassour; Dawn Anne Thompson; Brian J. Haas; Naomi Habib; Ilan Wapinski; Sushmita Roy; Michael F. Lin; David I. Heiman; Sarah K. Young; Kanji Furuya; Yabin Guo; Alison L. Pidoux; Huei Mei Chen; Barbara Robbertse; Jonathan M. Goldberg; Keita Aoki; Elizabeth H. Bayne; Aaron M. Berlin; Christopher A. Desjardins; Edward Dobbs; Livio Dukaj; Lin Fan; Michael Fitzgerald; Courtney French; Sharvari Gujja; Klavs Wörgler Hansen; Daniel Keifenheim; Joshua Z. Levin

A combined analysis of genome sequence, structure, and expression gives insights into fission yeast biology. The fission yeast clade—comprising Schizosaccharomyces pombe, S. octosporus, S. cryophilus, and S. japonicus—occupies the basal branch of Ascomycete fungi and is an important model of eukaryote biology. A comparative annotation of these genomes identified a near extinction of transposons and the associated innovation of transposon-free centromeres. Expression analysis established that meiotic genes are subject to antisense transcription during vegetative growth, which suggests a mechanism for their tight regulation. In addition, trans-acting regulators control new genes within the context of expanded functional modules for meiosis and stress response. Differences in gene content and regulation also explain why, unlike the budding yeast of Saccharomycotina, fission yeasts cannot use ethanol as a primary carbon source. These analyses elucidate the genome structure and gene regulation of fission yeast and provide tools for investigation across the Schizosaccharomyces clade.


Molecular and Cellular Biology | 2000

Fission Yeast Eso1p Is Required for Establishing Sister Chromatid Cohesion during S Phase

Koichi Tanaka; Toshihiro Yonekawa; Yosuke Kawasaki; Mihoko Kai; Kanji Furuya; Masaomi Iwasaki; Hiroshi Murakami; Mitsuhiro Yanagida; Hiroto Okayama

ABSTRACT Sister chromatid cohesion is essential for cell viability. We have isolated a novel temperature-sensitive lethal mutant namedeso1-H17 that displays spindle assembly checkpoint-dependent mitotic delay and abnormal chromosome segregation. At the permissive temperature, the eso1-H17 mutant shows mild sensitivity to UV irradiation and DNA-damaging chemicals. At the nonpermissive temperature, the mutant is arrested in M phase with a viability loss due to a failure to establish sister chromatid cohesion during S phase. The lethal M-phase arrest phenotype, however, is suppressed by inactivation of a spindle checkpoint. Theeso1+ gene is not essential for the onset and progression of DNA replication but has remarkable genetic interactions with those genes regulating the G1-S transition and DNA replication. The N-terminal two-thirds of Eso1p is highly homologous to DNA polymerase η of budding yeast and humans, and the C-terminal one-third is homologous to budding yeast Eco1p (also called Ctf7p), which is required for the establishment of sister chromatid cohesion. Deletion analysis and determination of the mutation site reveal that the function of the Eco1p/Ctf7p-homologous domain is necessary and sufficient for sister chromatid cohesion. On the other hand, deletion of the DNA polymerase η domain in Eso1p increases sensitivity to UV irradiation. These results indicate that Eso1p plays a dual role during DNA replication. The C-terminal region acts to establish sister chromatid cohesion, and the N-terminal region presumably catalyzes translesion DNA synthesis when template DNA contains lesions that block regular DNA replication.


Current Biology | 2002

Requirement of Chromatid Cohesion Proteins Rad21/Scc1 and Mis4/Scc2 for Normal Spindle-Kinetochore Interaction in Fission Yeast

Yusuke Toyoda; Kanji Furuya; Gohta Goshima; Koji Nagao; Kohta Takahashi; Mitsuhiro Yanagida

BACKGROUND Proteins conserved from yeast to human hold two sister chromatids together. The failure to form cohesion in the S phase results in premature separation of chromatids in G2/M. Mitotic kinetochores free from microtubules or the lack of tension are known to activate spindle checkpoint. RESULTS The loss of chromatid cohesion in fission yeast mutants (mis4-242 and rad21-K1) leads to the activation of Mad2- and Bub1-dependent checkpoint, possibly due to a diminished microtubule-kinetochore interaction. Bub1, a checkpoint kinase, localizes briefly at early mitotic kinetochores in wild-type, whereas the cohesion mutation greatly increases the duration of kinetochore localization. Bub1 is bound to the central centromere region of mitotic cells. These cohesion mutants are hypersensitive to a tubulin poison and are synthetic lethal with dis1 and bir1/cut17, which are defective in microtubule-kinetochore interaction. The formation of specialized centromere chromatin containing CENP-A does not require cohesion. Dominant-negative noncleavable Rad21 fails to activate checkpoint but blocks sister chromatid separation and full spindle elongation in anaphase. CONCLUSIONS Mis4 and Rad21 (budding yeast Scc2 and Scc1 homologs, respectively) act in establishing the normal spindle-kinetochore interaction in early mitosis and inhibit sister chromatid separation until the cleavage of Rad21 in anaphase. Checkpoint directly or indirectly monitors the states of cohesion in early mitosis. Full spindle extension occurs with unequal nuclear division in cohesion mutants in the absence of Mad2.


Genes to Cells | 2011

Breakage of the nuclear envelope by an extending mitotic nucleus occurs during anaphase in Schizosaccharomyces japonicus.

Keita Aoki; Hanako Hayashi; Kanji Furuya; Mamiko Sato; Tomoko Takagi; Masako Osumi; Akatsuki Kimura; Hironori Niki

During open mitosis in higher eukaryotic cells, the nuclear envelope completely breaks down and then mitotic chromosomes are exposed in the cytoplasm. By contrast, mitosis in lower eukaryotes, including fungi, proceeds with the nucleus enclosed in an intact nuclear envelope. The mechanism of mitosis has been studied extensively in yeast, a closed mitosis organism. Here, we describe a form of mitosis in which the nuclear envelope is torn by elongation of the nucleus in the fission yeast Schizosaccharomyces japonicus. The mitotic nucleus of Sz. japonicus adopted a fusiform shape in anaphase, and its following extension caused separation. Finally, a tear in the nuclear envelope occurred in late anaphase. At the same time, a polarized‐biased localization of nuclear pores was seen in the fusiform‐shaped nuclear envelope, suggesting a compromise in the mechanical integrity of the lipid membrane. It has been known that nuclear membrane remains intact in some metazoan mitosis. We found that a similar tear of the nuclear envelope was also observed in late mitosis of the Caenorhabditis elegans embryo. These findings provide insight into the diversity of mitosis and the biological significance of breakdown of the nuclear envelope.


Nature Cell Biology | 2007

Rad3-dependent phosphorylation of the checkpoint clamp regulates repair-pathway choice

Mihoko Kai; Kanji Furuya; Francesca Paderi; Antony M. Carr

When replication forks collapse, Rad3 phosphorylates the checkpoint-clamp protein Rad9 in a manner that depends on Thr 225, a residue within the PCNA-like domain. The physiological function of Thr 225-dependent Rad9 phosphorylation, however, remains elusive. Here, we show that Thr 225-dependent Rad9 phosphorylation by Rad3 regulates DNA repair pathways. A rad9T225C mutant induces a translesion synthesis (TLS)-dependent high spontaneous mutation rate and a hyper-recombination phenotype. Consistent with this, Rad9 coprecipitates with the post-replication repair protein Mms2. This interaction is dependent on Rad9 Thr 225 and is enhanced by DNA damage. Genetic analyses indicate that Thr 225-dependent Rad9 phosphorylation prevents inappropriate Rhp51-dependent recombination, potentially by redirecting the repair through a Pli1-mediated sumoylation pathway into the error-free branch of the Rhp6 repair pathway. Our findings reveal a new mechanism by which phosphorylation of Rad9 at Thr 225 regulates the choice of repair pathways for maintaining genomic integrity during the cell cycle.


Yeast | 2009

Isolation of heterothallic haploid and auxotrophic mutants of Schizosaccharomyces japonicus

Kanji Furuya; Hironori Niki

The fission yeast Schizosaccharomyces japonicus var. japonicus belong to the genus Schizosaccharomyces, together with Schizosaccharomyces pombe, which has been well studied as a model organism. In contrast, Sz. japonicus is poorly characterized and genetic tools were yet to be developed. We here report the isolation of the heterothallic haploids NIG2017, NIG2025 and NIG2028, which were derivatives of a Sz. japonicus homothallic strain (NIG2008). Based on the genomic sequence of Sz. japonicus, released by the Broad Institute, we found that Sz. japonicus also possesses orthologues of the mating‐type genes of Sz. pombe; two mat‐M (−) and two mat‐P (+) genes. As expected, heterothallic strains were defective in one of the Sz. japonicus mat genes (matsj). We confirmed that NIG2017 and NIG2025 strains only expressed mRNA from the matsj‐P genes, while homothallic strains expressed both matsj‐M and matsj‐P. Although the NIG2028 strain expressed both gene products, matsj‐P was found mutated, which may have conferred the heterothallic phenotype of the mutant. Thus, we concluded that these were stable heterothallic strains. We designated NIG2017 and NIG2025 as h+ and NIG 2028 as h−, respectively. We also found additional h− strains (NIG5872 and NIG5873) that arose from the cross between NIG2017 and NIG2028 derivatives. In addition to that, we have constructed a ura4sj‐deleted strain and an ade6sj‐mutated strain. We used these heterothallic strains and the auxotroph strains to perform spore dissection analysis to determine the genetic distances between several loci, and found that the mating type loci and ade6sj locus were linked to centromeres. Copyright


Yeast | 2010

Novel episomal vectors and a highly efficient transformation procedure for the fission yeast Schizosaccharomyces japonicus

Keita Aoki; Reiko Nakajima; Kanji Furuya; Hironori Niki

Schizosaccharomyces japonicus is a fission yeast for which new genetic tools have recently been developed. Here, we report novel plasmid vectors with high transformation efficiency and an electroporation method for Sz. japonicus. We isolated 44 replicating segments from 12 166 transformants of Sz. japonicus genomic fragments and found a chromosomal fragment, RS1, as a new replicating sequence that conferred high transformation activity to Sz. japonicus cells. This sequence was cloned into a pUC19 vector with ura4+ of Sz. pombe (pSJU11) or the kan gene on the kanMX6 module (pSJK11) as selection markers. These plasmids transformed Sz. japonicus cells in the early‐log phase by electroporation at a frequency of 123 cfu/µg for pSJK11 and 301 cfu/µg for pSJU11, which were higher than previously reported autonomously replicating sequences. Although a portion of plasmids remained in host cells by integration into the chromosome via RS1 segment, the plasmids could be recovered from transformants. The plasmid copy number was estimated to be 1.88 copies per cell by Southern blot analysis using a Sz. pombe ura4+ probe. The plasmid containing ade6+ suppressed the auxotrophic growth of the ade6‐domE mutant, indicating that the plasmid would be useful for suppressor screening and complementation assays in Sz. japonicus. Furthermore, pSJU11 transformed Sz. pombe cells with the same frequency as the pREP2 plasmid. This study is a report to demonstrate practical use of episomal plasmid vectors for genetic research in Sz. japonicus. RS1 has been submitted to the DDBJ/EMBL/GenBank database (Accession No. AB547343). Copyright


Molecular and Cellular Biology | 2010

The DNA Damage Checkpoint Regulates a Transition between Yeast and Hyphal Growth in Schizosaccharomyces japonicus

Kanji Furuya; Hironori Niki

ABSTRACT Dimorphic yeasts change between unicellular growth and filamentous growth. Many dimorphic yeasts species are pathogenic for humans and plants, being infectious as invasive hypha. We have studied the determinants of the dimorphic switch in the nonpathogenic fission yeast Schizosaccharomyces japonicus, which is evolutionarily close to the well-characterized fission yeast S. pombe. We report that camptothecin, an inhibitor of topoisomerase I, reversibly induced the unicellular to hyphal transition in S. japonicus at low concentrations of camptothecin that did not induce checkpoint arrest and the transition required the DNA checkpoint kinase Chk1. Furthermore, a mutation of chk1 induced hyphal transition without camptothecin. Thus, we identify a second function for Chk1 distinct from its role in checkpoint arrest. Activation of the switch from single cell bipolar growth to monopolar filamentous growth may assist cells to evade the source of DNA damage.


Journal of Cell Science | 2008

Diminishing HDACs by drugs or mutations promotes normal or abnormal sister chromatid separation by affecting APC/C and adherin

Yuu Kimata; Akihisa Matsuyama; Koji Nagao; Kanji Furuya; Chikashi Obuse; Minoru Yoshida; Mitsuhiro Yanagida

Histone acetyltransferases (HATs) and histone deacetylases (HDACs) play important roles in cell regulation, including cell cycle progression, although their precise role in mitotic progression remains elusive. To address this issue, the effects of HDAC inhibition were examined upon a variety of mitotic mutants of the fission yeast Schizosaccharomyces pombe, which contains three HDACs that are sensitive to trichostatin A (TSA) and are similar to human HDACs. Here it is shown that HDACs are implicated in sister chromatid cohesion and separation. A mutant of the cohesin loader Mis4 (adherin) was hypersensitive to TSA and synthetically lethal with HDAC deletion mutations. TSA treatment of mis4 mutant cells decreased chromatin-bound cohesins in the chromosome arm region. By contrast, HDAC inhibitors and clr6 HDAC mutations rescued temperature sensitive (ts) phenotypes of the mutants of the ubiquitin ligase complex anaphase-promoting complex/cyclosome (APC/C), which display metaphase arrest. This suppression coincided with facilitated complex formation of APC/C. Moreover, our mass spectrometry analysis showed that an APC/C subunit, Cut23/APC8, is acetylated. HATs and HDACs might directly target adherin and APC/C to ensure proper chromosome segregation, and anti-tumour effects of HDAC inhibitors could be attributed to this deregulation.

Collaboration


Dive into the Kanji Furuya's collaboration.

Top Co-Authors

Avatar

Hironori Niki

National Institute of Genetics

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Keita Aoki

National Institute of Genetics

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mitsuhiro Yanagida

Okinawa Institute of Science and Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Tomonari Matsuda

Environmental Quality Management

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge