Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kannan Kunchithapautham is active.

Publication


Featured researches published by Kannan Kunchithapautham.


Investigative Ophthalmology & Visual Science | 2009

A Targeted Inhibitor of the Alternative Complement Pathway Reduces Angiogenesis in a Mouse Model of Age-Related Macular Degeneration

B. Rohrer; Qin Long; Beth Coughlin; R. Brooks Wilson; Yuxiang Huang; Fei Qiao; Peter H. Tang; Kannan Kunchithapautham; Gary S. Gilkeson; Stephen Tomlinson

PURPOSE Polymorphisms in factor H (fH), an inhibitor of the alternative pathway (AP) of complement activation, are associated with increased risk for age-related macular degeneration (AMD). The authors investigated the therapeutic use of a novel recombinant form of fH, CR2-fH, which is targeted to sites of complement activation, in mouse choroidal neovascularization (CNV). CR2-fH consists of the N terminus of mouse fH, which contains the AP-inhibitory domain, linked to a complement receptor 2 (CR2) targeting fragment that binds complement activation products. METHODS Laser-induced CNV was analyzed in factor-B-deficient mice or in mice treated with CR2-fH, soluble CR2 (targeting domain), or PBS. CNV progression was analyzed by molecular, histologic, and electrophysiological readouts. RESULTS Intravenously administered CR2-fH reduced CNV size, preserved retina function, and abrogated the injury-associated expression of C3 and VEGF mRNA. CR2 and PBS treatment was without effect. In therapeutically relevant paradigms involving delayed treatment after injury, CR2-fH was effective in reducing CNV and provided approximately 60% of the amount of protection of that seen in factor B-deficient mice that lacked functional AP. After intravenous injection, CR2-fH localized to sites of C3 deposition in RPE-choroid. CONCLUSIONS Specific inhibition of the AP reduces angiogenesis in mouse CNV. Of note, intravenous injection of C3d-targeted CR2-fH is protective even though endogenous fH is present in serum at a higher relative concentration, and serum fH contains native C3d and cell surface binding domains that target it to cell surfaces. The most common AMD-associated variant of fH resides within a native cell-binding region of fH (Tyr402His). These data may open new avenues for AMD treatment strategies.


Journal of Biological Chemistry | 2009

Oxidative Stress Renders Retinal Pigment Epithelial Cells Susceptible to Complement-mediated Injury

Joshua M. Thurman; Brandon Renner; Kannan Kunchithapautham; Viviana P. Ferreira; Michael K. Pangburn; Zsolt Ablonczy; Stephen Tomlinson; V. Michael Holers; Bärbel Rohrer

Uncontrolled activation of the alternative pathway of complement is thought to be associated with age-related macular degeneration (AMD). The alternative pathway is continuously activated in the fluid phase, and tissue surfaces require continuous complement inhibition to prevent spontaneous autologous tissue injury. Here, we examined the effects of oxidative stress on the ability of immortalized human retinal pigment epithelial cells (ARPE-19) to regulate complement activation on their cell surface. Combined treatment with H2O2 (to induce oxidative stress) and complement-sufficient serum was found to disrupt the barrier function of stable ARPE-19 monolayers as determined by transepithelial resistance (TER) measurements. Neither treatment alone had any effect. TER reduction was correlated with increased cell surface deposition of C3, and could be prevented by using C7-depleted serum, an essential component of the terminal complement pathway. Treatment with H2O2 reduced surface expression of the complement inhibitors DAF, CD55, and CD59, and impaired regulation at the cell surface by factor H present within the serum. Combined treatment of the monolayers with H2O2 and serum elicited polarized secretion of vascular epidermal growth factor (VEGF). Both, secretion of VEGF and TER reduction could be attenuated using either an alternative pathway inhibitor or by blocking VEGF receptor-1/2 signaling. Regarded together, these studies demonstrate that oxidative stress reduces regulation of complement on the surface of ARPE-19 cells, increasing complement activation. This sublytic activation results in VEGF release, which mediates disruption of the cell monolayer. These findings link oxidative stress, complement activation, and apical VEGF release, which have all been associated with the pathogenesis of AMD.


Autophagy | 2007

Apoptosis and Autophagy in Photoreceptors Exposed to Oxidative Stress

Kannan Kunchithapautham; Bärbel Rohrer

Studies on human and animal models of retinal dystrophy have suggested that apoptosis may be the common pathway of photoreceptor cell death. Autophagy, the major cellular degradation process in animal cells, is important in normal development and tissue remodeling, as well as under pathological conditions. Previously we provided evidence that genes, whose products are involved in apoptosis and autophagy, may be co-expressed in photoreceptors undergoing degeneration. Here, we investigated autophagy in oxidative stress-mediated cell death in photoreceptors, analyzing the light-damage mouse model and 661W photoreceptor cells challenged with H2O2. In the in vivo model, we demonstrated a time-dependent increase in the number of TUNEL-positive cells, concomitant with the formation of autophagosomes. In vitro, oxidative stress increased mRNA levels of apoptotic and autophagic marker genes. H2O2 treatment resulted in the accumulation of TUNEL-positive cells, the majority of which contain autophagosomes. To determine whether autophagy and apoptosis might precede each other or co-occur, we performed inhibitor studies. The autophagy inhibitor 3-methyladenine (3-MA), silencing RNA (siRNA) against two genes whose products are required for autophagy (autophagy-related (ATG) gene 5 and beclin 1), as well as the pan-caspase-3 inhibitor, zVAD-fmk, were both found to partially block cell death. Blocking autophagy also significantly decreased caspase-3 activity, whereas blocking apoptosis increased the formation of autophagosomes. The survival effects of 3-MA and zVAD-fmk were not additive; rather treatment with both inhibitors lead to increased cell death by necrosis. In summary, the study first suggests that autophagy participates in photoreceptor cell death possibly by initiating apoptosis. Second, it confirms that cells that normally die by apoptosis will execute cell death by necrosis if the normal pathway is blocked. And third, these results argue that the up-stream regulators of autophagy need to be identified as potential therapeutic targets in photoreceptor degeneration.


Journal of Biological Chemistry | 2014

Smoke Exposure Causes Endoplasmic Reticulum Stress and Lipid Accumulation in Retinal Pigment Epithelium through Oxidative Stress and Complement Activation

Kannan Kunchithapautham; Carl Atkinson; Bärbel Rohrer

Background: Smoke components can generate 1) oxidative stress; 2) complement activation; 3) endoplasmic reticulum stress; and 4) lipid dysregulation. Results: In smoke-exposed RPE cells all four measures were activated, and reversed by antioxidants and blocking alternative complement pathway signaling. Conclusion: Oxidative stress and complement act synergistically in age-related macular degeneration (AMD) pathogenesis. Significance: Identifying mechanisms of lipid deposition will aid to develop new therapeutic approaches for AMD. Age-related macular degeneration (AMD) is a complex disease caused by genetic and environmental factors, including genetic variants in complement components and smoking. Smoke exposure leads to oxidative stress, complement activation, endoplasmic reticulum (ER) stress, and lipid dysregulation, which have all been proposed to be associated with AMD pathogenesis. Here we examine the effects of smoke exposure on the retinal pigment epithelium (RPE). Mice were exposed to cigarette smoke or filtered air for 6 months. RPE cells grown as stable monolayers were exposed to 5% cigarette smoke extract (CSE). Effects of smoke were determined by biochemical, molecular, and histological measures. Effects of the alternative pathway (AP) of complement and complement C3a anaphylatoxin receptor signaling were analyzed using knock-out mice or specific inhibitors. ER stress markers were elevated after smoke exposure in RPE of intact mice, which was eliminated in AP-deficient mice. To examine this relationship further, RPE monolayers were exposed to CSE. Short term smoke exposure resulted in production and release of complement C3, the generation of C3a, oxidative stress, complement activation on the cell membrane, and ER stress. Long term exposure to CSE resulted in lipid accumulation, and secretion. All measures were reversed by blocking C3a complement receptor (C3aR), alternative complement pathway signaling, and antioxidant therapy. Taken together, our results provide clear evidence that smoke exposure results in oxidative stress and complement activation via the AP, resulting in ER stress-mediated lipid accumulation, and further suggesting that oxidative stress and complement act synergistically in the pathogenesis of AMD.


Molecular Immunology | 2011

The alternative pathway is required, but not alone sufficient, for retinal pathology in mouse laser-induced choroidal neovascularization.

Bärbel Rohrer; Beth Coughlin; Kannan Kunchithapautham; Qin Long; Stephen Tomlinson; Kazue Takahashi; V. Michael Holers

Human genetic studies have demonstrated that polymorphisms in different complement proteins can increase the risk for developing AMD. There are three pathways of complement activation, classical (CP), alternative (AP), and lectin (LP), which all activate a final common pathway. Proteins encoded by the AMD risk genes participate in the AP (CFB), CP/LP (C2), or in the AP and final common pathway (C3). Here we tested which pathway is essential in mouse laser-induced CNV. CNV was analyzed using single complement pathway knockouts (i.e., eliminating one complement pathway at a time), followed by a double knockout in which only the AP is present, and the CP and LP are disabled, using molecular, histological and electrophysiological outcomes. First, single-gene knockouts were analyzed and compared to wild type mice; C1q(-/-) (no CP), MBL(-/-) (no LP), and CFB(-/-) (no AP). Six days after the laser-induced lesion, mice without a functional AP had reduced CNV progression (P<0.001) and preserved ERG amplitudes, whereas those without a functional CP or LP were indistinguishable from the wild type controls (P>0.3). Second, AP-only mice (C1q(-/-)MBL(-/-)) were as protected from developing CNV as the CFB(-/-) mice. The degree of pathology in each strain correlated with protein levels of the angiogenic and anti-angiogenic protein VEGF and PEDF, respectively, as well as levels of terminal pathway activation product C5a, and C9. The analysis of complement activation pathways in mouse laser-induced CNV allows for the following conclusions. Comparing the single pathway knockouts with those having only a functional AP showed: (1) that AP activation is necessary, but not alone sufficient for injury; and (2) that initial complement activation proceeds via both the LP and CP. Thus, these data indicate an important role for the AP in the generation of complement-dependent injury in the RPE and choroid via amplification of CP- and LP-initiated complement activation. Improving our understanding of the local regulation of this pathway in the eye is essential for developing improved treatment approaches for AMD.


Journal of Biological Chemistry | 2011

Sublytic Membrane-Attack-Complex (MAC) Activation Alters Regulated Rather than Constitutive Vascular Endothelial Growth Factor (VEGF) Secretion in Retinal Pigment Epithelium Monolayers

Kannan Kunchithapautham; Bärbel Rohrer

Uncontrolled activation of the alternative complement pathway and secretion of vascular endothelial growth factor (VEGF) are thought to be associated with age-related macular degeneration (AMD). Previously, we have shown that in RPE monolayers, oxidative-stress reduced complement inhibition on the cell surface. The resulting increased level of sublytic complement activation resulted in VEGF release, which disrupted the barrier facility of these cells as determined by transepithelial resistance (TER) measurements. Induced rather than basal VEGF release in RPE is thought to be controlled by different mechanisms, including voltage-dependent calcium channel (VDCC) activation and mitogen-activated protein kinases. Here we examined the potential intracellular links between sublytic complement activation and VEGF release in RPE cells challenged with H2O2 and complement-sufficient normal human serum (NHS). Disruption of barrier function by H2O2 + NHS rapidly increased Ras expression and Erk and Src phosphorylation, but had no effect on P38 phosphorylation. Either treatment alone had little effect. TER reduction could be attenuated by inhibiting Ras, Erk and Src activation, or blocking VDCC or VEGF-R2 activation, but not by inhibiting P38. Combinatorial analysis of inhibitor effects demonstrated that sublytic complement activation triggers VEGF secretion via two pathways, Src and Ras-Erk, with the latter being amplified by VEGF-R2 activation, but has no effect on constitutive VEGF secretion mediated via P38. Finally, effects on TER were directly correlated with release of VEGF; and sublytic MAC activation decreased levels of zfp36, a negative modulator of VEGF transcription, resulting in increased VEGF expression. Taken together, identifying how sublytic MAC induces VEGF expression and secretion might offer opportunities to selectively inhibit pathological VEGF release only.


Journal of Biological Chemistry | 2013

Oxidative Stress Sensitizes Retinal Pigmented Epithelial (RPE) Cells to Complement-mediated Injury in a Natural Antibody-, Lectin Pathway-, and Phospholipid Epitope-dependent Manner

Kusumam Joseph; Liudmila Kulik; Beth Coughlin; Kannan Kunchithapautham; Mausumi Bandyopadhyay; Steffen Thiel; Nicole Thielens; V. Michael Holers; Bärbel Rohrer

Background: Age-related macular degeneration (AMD) involves complement activation; however, initiating ligands and essential arms of the complement cascade are unknown. Results: Phospholipid neoepitopes recognized by natural IgM antibodies triggered lectin pathway in RPE injury models. Conclusion: A role for neoepitopes in triggering AMD pathology was identified. Significance: Identifying macular neoepitopes and components of the complement cascade essential for pathology will aid in developing new therapeutic approaches. Uncontrolled activation of the alternative complement pathway (AP) is thought to be associated with age-related macular degeneration. Previously, we have shown that in retinal pigmented epithelial (RPE) monolayers, oxidative stress reduced complement inhibition on the cell surface, resulting in sublytic complement activation and loss of transepithelial resistance (TER), but the potential ligand and pathway involved are unknown. ARPE-19 cells were grown as monolayers on transwell plates, and sublytic complement activation was induced with H2O2 and normal human serum. TER deteriorated rapidly in H2O2-exposed monolayers upon adding normal human serum. Although the effect required AP activation, AP was not sufficient, because elimination of MASP, but not C1q, prevented TER reduction. Reconstitution experiments to unravel essential components of the lectin pathway (LP) showed that both ficolin and mannan-binding lectin can activate the LP through natural IgM antibodies (IgM-C2) that recognize phospholipid cell surface modifications on oxidatively stressed RPE cells. The same epitopes were found on human primary embryonic RPE monolayers. Likewise, mouse laser-induced choroidal neovascularization, an injury that involves LP activation, could be increased in antibody-deficient rag1−/− mice using the phospholipid-specific IgM-C2. In summary, using a combination of depletion and reconstitution strategies, we have shown that the LP is required to initiate the complement cascade following natural antibody recognition of neoepitopes, which is then further amplified by the AP. LP activation is triggered by IgM bound to phospholipids. Taken together, we have defined novel mechanisms of complement activation in oxidatively stressed RPE, linking molecular events involved in age-related macular degeneration, including the presence of natural antibodies and neoepitopes.


Investigative Ophthalmology & Visual Science | 2011

Differential Effects of Rapamycin on Rods and Cones During Light-Induced Stress in Albino Mice

Kannan Kunchithapautham; Beth Coughlin; John J. Lemasters; Bärbel Rohrer

PURPOSE Autophagy is a lysosomal machinery-dependent process that catabolizes cellular components/organelles and proteins in an autophagic vacuole (AV)-dependent and -independent manner, respectively. Short-term exposure of the retina to bright light results in shortening of the outer segments, concomitant with AV formation. Autophagy is also induced by continuous long-term light damage, leading to photoreceptor cell death. Here the authors examined two questions: is autophagy induced during light damage proapoptotic or antiapoptotic, and are rods and cones affected differently? To this end, Balb/c mice exposed to light damage were treated with rapamycin to increase autophagy. METHODS Balb/c and GFP-LC3 mice were treated with rapamycin/vehicle. Photoreceptor degeneration was induced by 10-day light damage. Autophagy was documented by histologic, biochemical, and molecular tools; rod and cone survival was assessed by histology and electroretinography. RESULTS Light damage resulted in rod, but not cone, cell loss. Autophagy and AV formation was elicited in response to light damage, which was amplified by rapamycin. Rapamycin treatment significantly improved rod survival and function, reduced apoptosis, and normalized cytokine production that was increased in light damage. However, AV formation in GFP-LC3 mice revealed that light damage or rapamycin treatment induced AVs in cones, concomitant with reduced cone-mediated electroretinograms. CONCLUSIONS Systemic rapamycin treatment provided rod protection; however, AV formation was induced only in cones. Thus, rapamycin may act differentially in stressed photoreceptors; rapamycin might protect rods by normalizing cytokine production, removing damaged proteins by AV-independent autophagy, or both, whereas cones might be protected by AV-dependent autophagy, possibly involving reduced photon capture.


Autophagy | 2007

Autophagy is One of the Multiple Mechanisms Active in Photoreceptor Degeneration

Kannan Kunchithapautham; Bärbel Rohrer

Photoreceptor degeneration in human photoreceptor dystrophies and in the relevant animal models has been thought to be executed by one common mechanism – caspase-mediated apoptosis. However, recent experiments have challenged this concept. Gene defects or environmental stressors appear to cause oxidative stress and altered metabolism, which appear to induce caspase-dependent and caspase-independent cell death mechanisms such as the activation of cysteine-proteases, lysosomal proteases and autophagy and possibly complement-mediated lysis. In this article, we point out mechanistic parallels between these pathways and summarize our recently published investigation using a temporal analysis of the different pathways, which suggests that the non-caspase-dependent mechanisms may actively participate in the demise of the photoreceptors rather than represent a passive response of the retina to the presence of dying cells. Our investigation revealed that unless the common upstream initiator for a given photoreceptor dystrophy can be found, multiple rescue paradigms need to be used to target all active pathways. Addendum to: Multiple, Parallel Cellular Suicide Mechanisms Participate in Photoreceptor Cell Death H.R. Lohr, K. Kuntchithapautham, A.K. Sharma and B. Rohrer Exp Eye Res 2006; 83:380-9


Investigative Ophthalmology & Visual Science | 2009

Cone Outer Segment Morphology and Cone Function in the Rpe65-/- Nrl-/- Mouse Retina Are Amenable to Retinoid Replacement

Kannan Kunchithapautham; Beth Coughlin; Rosalie K. Crouch; B. Rohrer

PURPOSE RPE65, a major retinal pigment epithelium protein, is essential in generating 11-cis retinal, the chromophore for all opsins. Without chromophore, cone opsins are mislocalized and cones degenerate rapidly (e.g., Rpe65(-/-) mouse). Function, survival, and correct targeting of opsins is increased in Rpe65(-/-) cones on supplying 11-cis retinal. Here, we determine the consequences of 11-cis retinal withdrawal and supplementation on cone development in the all-cone Nrl(-/-) retina. METHODS Rpe65(-/-) Nrl(-/-), Nrl(-/-), and wild-type mice were examined. Cone structure was analyzed by using TUNEL assay, electron microscopy, and cone-specific antibodies. Cone function was assessed with light-adapted single-flash ERGs. RESULTS Rpe65(-/-)Nrl(-/-) mice had an increased number of TUNEL-positive photoreceptors during programmed cell death compared with Nrl(-/-) mice, in addition to accelerated age-related degeneration. Cone function in Rpe65(-/-)Nrl(-/-) mice was minimal, and opsins were mislocalized. Treatment with 11-cis retinal restored cone function, promoted outer segment formation, and enabled opsin trafficking to outer segments. Eliminating Rpe65 prevented rosette formation in Nrl(-/-) retinas; supplementation of Rpe65(-/-)Nrl(-/-) mice with 11-cis retinal resulted in their reoccurrence. CONCLUSIONS Taken together, function and opsin trafficking in Nrl(-/-) and wild-type cones are comparable, confirming and extending our findings that cone maturation and outer segment development are dependent on the presence of chromophore. The data on age-related cone death in Rpe65(-/-)Nrl(-/-) mice and the reintroduction of rosettes after 11-cis retinal injections confirm that outer segments, which for steric reasons appear to introduce rosettes in an all-cone retina, are essential for cell survival. These results are important for understanding and treating chromophore-related cone dystrophies.

Collaboration


Dive into the Kannan Kunchithapautham's collaboration.

Top Co-Authors

Avatar

Bärbel Rohrer

Medical University of South Carolina

View shared research outputs
Top Co-Authors

Avatar

Beth Coughlin

Medical University of South Carolina

View shared research outputs
Top Co-Authors

Avatar

B. Rohrer

Medical University of South Carolina

View shared research outputs
Top Co-Authors

Avatar

Joshua M. Thurman

University of Colorado Denver

View shared research outputs
Top Co-Authors

Avatar

Stephen Tomlinson

Medical University of South Carolina

View shared research outputs
Top Co-Authors

Avatar

V. Michael Holers

University of Colorado Denver

View shared research outputs
Top Co-Authors

Avatar

Gary S. Gilkeson

Medical University of South Carolina

View shared research outputs
Top Co-Authors

Avatar

Mausumi Bandyopadhyay

Medical University of South Carolina

View shared research outputs
Top Co-Authors

Avatar

Qin Long

Medical University of South Carolina

View shared research outputs
Top Co-Authors

Avatar

Brandon Renner

University of Colorado Denver

View shared research outputs
Researchain Logo
Decentralizing Knowledge