Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kanokwan Srirattana is active.

Publication


Featured researches published by Kanokwan Srirattana.


Cellular Reprogramming | 2012

Full-Term Development of Gaur–Bovine Interspecies Somatic Cell Nuclear Transfer Embryos: Effect of Trichostatin A Treatment

Kanokwan Srirattana; Sumeth Imsoonthornruksa; C. Laowtammathron; Anawat Sangmalee; Wanchai Tunwattana; Thamnoon Thongprapai; Chockchai Chaimongkol; Mariena Ketudat-Cairns; Rangsun Parnpai

Trichostatin A (TSA) has previously been used in somatic cell nuclear transfer (SCNT) to improve the cloning efficiency in several species, which led our team to investigate the effects of TSA on the full-term development of bovine SCNT and gaur-bovine interspecies SCNT (gaur iSCNT; gaur somatic cells as donors and bovine oocytes as recipients) embryos. Treatment with 50 nM TSA for 10 h after fusion had no positive effects on the rates of fusion, cleavage, or the development to eight-cell or morula stages in both bovine SCNT and gaur iSCNT embryos. However, TSA treatment significantly enhanced the blastocyst formation rate in bovine SCNT embryos (44 vs. 32-34% in the TSA-treated and TSA-untreated groups, respectively), but had no effects on gaur iSCNT embryos. The fresh blastocysts derived from bovine SCNT and gaur iSCNT embryos (fresh groups), as well as vitrified bovine SCNT blastocysts (vitrified group), were transferred to bovine recipients. We found that TSA treatment increased the pregnancy rates only in recipients receiving fresh bovine SCNT embryos. In recipients receiving TSA-treated bovine SCNT embryos, three cloned calves from the fresh group and twin cloned calves from the vitrified group were delivered; however, no calf was born from the TSA-untreated bovine SCNT embryos. In contrast, one gaur iSCNT calf was born from a recipient receiving blastocysts from the TSA-untreated group. In summary, TSA improved the preimplantation development and pregnancy rates of bovine SCNT embryos, but did not have any beneficial effect on gaur iSCNT embryos. However, one gaur iSCNT calf reached full-term development.


Mitochondrion | 2010

Microinjection of serum-starved mitochondria derived from somatic cells affects parthenogenetic development of bovine and murine oocytes

Kumiko Takeda; Mariko Tasai; Satoshi Akagi; Kazutsugu Matsukawa; Seiya Takahashi; Masaki Iwamoto; Kanokwan Srirattana; Akira Onishi; Takahiro Tagami; Keijiro Nirasawa; Hirofumi Hanada; Carl A. Pinkert

Microinjection of isolated mitochondria into oocytes is an effective method to introduce exogenous mitochondrial DNA. In nuclear transfer procedures in which donor cell mitochondria are transferred with nuclei into recipient oocytes; development and survival rates of reconstructed embryos may be also directly influenced by mitochondrial viability. Mitochondrial viability is dramatically affected by cell culture conditions, such as serum starvation prior to nuclear transfer. This study was conducted to examine the influence of exogenous mitochondria using bovine and mouse parthenogenetic models. Mitochondria were isolated from primary cells at confluency and after serum starvation. The bovine oocytes injected with serum-starved mitochondria showed lower rates of morula and blastocyst formation when compared to uninjected controls (P<0.05). However, the developmental rates between non-starved mitochondria injection and controls were not different (P>0.05). The murine oocytes injected with serum-starved mitochondria showed lower rates of development when compared with non-starved mitochondria and controls (P<0.01). In contrast to mitochondria transfer, ooplasm transfer did not affect murine or bovine parthenogenetic development (P>0.05). The overall results showed that injection of serum-starved mitochondria influenced parthenogenetic development of both bovine and murine oocytes. Our results illustrate that the somatic mitochondria introduction accompanying nuclei has the capacity to affect reconstructed embryo development; particularly when using serum-starved cells as donor cells.


Animal Science Journal | 2013

Effect of L-carnitine on maturation, cryo-tolerance and embryo developmental competence of bovine oocytes

Teewara Phongnimitr; Yuanyuan Liang; Kanokwan Srirattana; Kanchana Panyawai; Nucharin Sripunya; Rangsun Parnpai

In this study, the effects of the addition of L-carnitine in in vitro maturation (IVM) medium for bovine oocytes on their nuclear maturation and cryopreservation were investigated; they were matured in IVM medium supplemented with 0.0, 0.3, 0.6 and 1.2 mg/mL of L-carnitine (control, 0.3, 0.6 and 1.2 groups, respectively) and some of them were vitrified by Cryotop. Moreover, the effects of L-carnitine during in vitro fertilization (IVF) and in vitro culture (IVC) on the developmental potential and quality of IVF embryos were also examined. A significantly higher maturation rate of oocytes was obtained for 0.3 and 0.6 mg/mL groups compared with the control (P < 0.05). The blastocyst formation rate in the 0.6 group was significantly improved, whereas the rate in the 1.2 group was significantly decreased when compared with the control group (P < 0.05). No significant difference was found in embryo development between the control and the L-carnitine group after oocyte vitrification. Supplementation of IVF and IVC media with L-carnitine had no effect on development to the blastocyst stage of IVM oocytes treated with 0.6 mg/mL L-carnitine. In conclusion, the supplementation of L-carnitine during IVM of bovine oocytes improved their nuclear maturation and subsequent embryo development after IVF, but when they were vitrified the improving effects were neutralized.


Cryobiology | 2012

Effects of vitrification cryoprotectant treatment and cooling method on the viability and development of buffalo oocytes after intracytoplasmic sperm injection

Yuan Yuan Liang; Kanokwan Srirattana; Tatsanee Phermthai; T. Somfai; Takashi Nagai; Rangsun Parnpai

In vitro matured (IVM) buffalo oocytes at the metaphase of the second meiotic division (MII) were vitrified in 20% Me(2)SO: 20% EG (v/v) and 0.5M sucrose (VA), or 35% EG (v/v), 50mg/mL polyvinylpyrrolidone (PVP), and 0.4M trehalose (VB), either on cryotops or as 2μL microdrops. The viability was assessed after warming by fluorescein diacetate (FDA) staining and all surviving oocytes were subjected to ICSI and ethanol activation. All vitrified groups had similar recovery rates but both VA groups had significantly higher survival and pronuclear formation rates than either of the VB groups. Non treated control oocytes and non cryopreserved oocytes exposed to FDA had significantly higher survival, 2nd polar body extrusion, PN and blastocyst formation rates than any of the four vitrified groups (P<0.05). In conclusion The cryotop and microdrop methods are equally effective for buffalo oocyte vitrification, and although vitrification in VA solution yielded higher rates of survival and formation of 2 pronuclei than VB, the rate of blastocyst formation was comparable for both solutions. A detailed analysis of oocytes that extruded the second polar body after ICSI and activation revealed that only a minority (7-20% of the vitrified and 46-48% of the control oocytes) also had two pronuclei, indicating that normal activation is compromised by vitrification.


Cellular Reprogramming | 2012

Development of intergeneric and intrageneric somatic cell nuclear transfer (SCNT) cat embryos and the determination of telomere length in cloned offspring.

Sumeth Imsoonthornruksa; Anawat Sangmalee; Kanokwan Srirattana; Rangsun Parnpai; Mariena Ketudat-Cairns

Somatic cell nuclear transfer (SCNT) holds potential as a useful tool for agricultural and biomedical applications. In vitro development of marbled cat intergeneric SCNT reconstructed into domestic cat cytoplast revealed that cloned, marbled cat embryo development was blocked at the morula stage. No pregnancies resulted from the transfer of one- to eight-cell stage embryos into domestic cat surrogate mothers. This suggested that abnormalities occurred in the cloned marbled cat embryos, which may be associated with incomplete reprogramming during early embryo development. Two pregnancies were established in surrogate mothers that received cloned domestic cat embryos, but SCNT offspring developed abnormally. Some specific phenotypes that were observed included incomplete abdominal wall disclosure, improper fetal development. In addition, some of the fetuses were mummified or stillbirths. The two live births died within 5 days. Telomere lengths of cloned kittens as determined by qualtitative polymerase chain reaction (qPCR) were inconclusive: some were found to be shorter, longer, or the same as donor control cells. Our findings support the hypothesis that telomere lengths do not govern the health of these cloned animals. A lack of complete reprogramming may lead to developmental failure and the abnormalities observed in cloned offspring.


Animal Science Journal | 2011

Constant transmission of mitochondrial DNA in intergeneric cloned embryos reconstructed from swamp buffalo fibroblasts and bovine ooplasm.

Kanokwan Srirattana; Kazutsugu Matsukawa; Satoshi Akagi; Mariko Tasai; Takahiro Tagami; Keijiro Nirasawa; Takashi Nagai; Yukio Kanai; Rangsun Parnpai; Kumiko Takeda

Although interspecies/intergeneric somatic cell nuclear transfer (iSCNT) has been proposed as a tool to produce offspring of endangered species, conflict between donor nucleus and recipient cytoplasm in iSCNT embryos has been identified as an impediment to implementation for agricultural production. To investigate the nuclear-mitochondrial interactions on the developmental potential of iSCNT embryos, we analyzed the mtDNA copy numbers in iSCNT embryos reconstructed with water buffalo (swamp type) fibroblasts and bovine enucleated oocytes (buffalo iSCNT). As controls, SCNT embryos were derived from bovine fibroblasts (bovine SCNT). Buffalo iSCNT and bovine SCNT embryos showed similar rates of cleavage and development to the 8-cell stage (P>0.05). However, buffalo iSCNT embryos did not develop beyond the 16-cell stage. Both bovine and buffalo mtDNA content in buffalo iSCNT embryos was stable throughout the nuclear transfer process, and arrested at the 8- to 16-cell stage (P>0.05). In bovine SCNT embryos that developed to the blastocyst stage, mtDNA copy number was increased (P<0.05). In conclusion, both the donor cell and recipient cytoplast mtDNAs of buffalo iSCNT embryos were identified and maintained through the iSCNT process until the 8-16-cell stage. In addition, the copy number of mtDNA per embryo was a useful monitor to investigate nuclear-mitochondrial interactions.


Cryobiology | 2014

Cytochalasin B efficiency in the cryopreservation of immature bovine oocytes by Cryotop and solid surface vitrification methods.

Nucharin Sripunya; Yuanyuan Liang; Kanchana Panyawai; Kanokwan Srirattana; Piyada Ngernsoungnern; Mariena Ketudat-Cairns; Rangsun Parnpai

The present study was undertaken to compare the efficacies of Cryotop (CT), solid surface vitrification (SSV) methods and cytochalasin B (CB) treatment for the cryopreservation of immature bovine oocytes, in terms of survival, nuclear maturation, and in vitro development. Solution exposed oocytes were in vitro maturated and fertilized. No difference was found in the rates of survival, nuclear maturation and blastocyst among solution exposed groups and fresh control group, except blastocysts rates in oocytes exposed to CB, cryoprotectant (CPA) and fluorescein diacetate (FDA) group (CB-CPA-FDA) (23%) significantly lower than that of control group (32%). CB pretreated ((+)CB) or non-pretreated ((-)CB) COCs were vitrified either by SSV or CT. Among four vitrified groups the nuclear maturation rates (CT(-)CB: 58%, CT(+)CB: 57%, SSV(-)CB: 60%, SSV(+)CB: 63%), cleavage (CT(-)CB: 36%, CT(+)CB: 24%, SSV(-)CB: 34%, SSV(+)CB: 26%) and blastocysts rates (CT(-)CB: 6%, CT(+)CB: 7%, SSV(-)CB: 4%, SSV(+)CB: 6%) did not differ, but the rates of the four vitrified groups were significantly lower than those of non-vitrified group (81%, 71% and 26%, respectively). We thus conclude that CT and SSV perform equally in vitrification of bovine immature oocytes, and CB did not increase the viability, nuclear maturation, or in vitro development of vitrified oocytes.


Journal of Reproduction and Development | 2015

Comparison of Cryotop and micro volume air cooling methods for cryopreservation of bovine matured oocytes and blastocysts.

Kanchana Punyawai; Nitira Anakkul; Kanokwan Srirattana; Yoshio Aikawa; Siwat Sangsritavong; Takashi Nagai; Kei Imai; Rangsun Parnpai

This study was designed to compare the efficiency of the Cryotop method and that of two methods that employ a micro volume air cooling (MVAC) device by analyzing the survival and development of bovine oocytes and blastocysts vitrified using each method. In experiment I, in vitro-matured (IVM) oocytes were vitrified using an MVAC device without direct contact with liquid nitrogen (LN2; MVAC group) or directly plunged into LN2 (MVAC in LN2 group). A third group of IVM oocytes was vitrified using a Cryotop device (Cryotop group). After warming, vitrified oocytes were fertilized in vitro. There were no significant differences in cleavage and blastocyst formation rates among the three vitrified groups, with the rates ranging from 53.1% to 56.6% and 20.0% to 25.5%, respectively; however, the rates were significantly lower (P < 0.05) than those of the fresh control group (89.3% and 43.3%, respectively) and the solution control group (87.3% and 42.0%, respectively). In experiment II, in vitro-produced (IVP) expanded blastocysts were vitrified using the MVAC, MVAC in LN2 and Cryotop methods, warmed and cultured for survival analysis and then compared with the solution control group. The rate of development of vitrified-warmed expanded blastocysts to the hatched blastocyst stage after 24 h of culture was lower in the MVAC in LN2 group than in the solution control group; however, after 48–72 h of culture, the rates did not significantly differ between the groups. These results indicate that the MVAC method without direct LN2 contact is as effective as the standard Cryotop method for vitrification of bovine IVM oocytes and IVP expanded blastocysts.


Journal of Reproduction and Development | 2014

Effects of trichostatin A on In vitro development and DNA methylation level of the satellite I region of swamp buffalo (Bubalus bubalis) cloned embryos.

Kanokwan Srirattana; Mariena Ketudat-Cairns; Takashi Nagai; Masahiro Kaneda; Rangsun Parnpai

Trichostatin A (TSA), a histone deacetylase inhibitor, has been widely used to improve the cloning efficiency in several species. This brings our attention to investigation of the effects of TSA on developmental potential of swamp buffalo cloned embryos. Swamp buffalo cloned embryos were produced by electrical pulse fusion of male swamp buffalo fibroblasts with swamp buffalo enucleated oocytes. After fusion, reconstructed oocytes were treated with 0, 25 or 50 nM TSA for 10 h. The results showed that there was no significant difference in the rates of fusion (82–85%), cleavage (79–84%) and development to the 8-cell stage (59–65%) among treatment groups. The highest developmental rates to the morula and blastocyst stages of embryos were found in the 25 nM TSA-treated group (42.7 and 30.1%, respectively). We also analyzed the DNA methylation level in the satellite I region of donor cells and in in vitro fertilized (IVF) and cloned embryos using the bisulfite DNA sequencing method. The results indicated that the DNA methylation levels in cloned embryos were significantly higher than those of IVF embryos but approximately similar to those of donor cells. Moreover, there was no significant difference in the methylation level among TSA-treated and untreated cloned embryos. Thus, TSA treatments at 25 nM for 10 h could enhance the in vitro developmental potential of swamp buffalo cloned embryos, but no beneficial effect on the DNA methylation level was observed.


Mitochondrion | 2012

Segregation of donor cell mitochondrial DNA in gaur-bovine interspecies somatic cell nuclear transfer embryos, fetuses and an offspring

Sumeth Imsoonthornruksa; Kanokwan Srirattana; Wanwisa Phewsoi; Wanchai Tunwattana; Rangsun Parnpai; Mariena Ketudat-Cairns

The fate of foreign mitochondrial DNA (mtDNA) following somatic cell nuclear transfer (SCNT) is still controversial. In this study, we examined the transmission of the heteroplasmic mtDNA of gaur donor cells and recipient bovine oocytes to an offspring and aborted and mummified fetuses at various levels during the development of gaur-bovine interspecies SCNT (iSCNT) embryos. High levels of the donor cell mtDNA were found in various tissue samples but they did not have any beneficial effect to the survival of iSCNT offspring. However, the factors on mtDNA inheritance are unique for each iSCNT experiment and depend on the recipient oocyte and donor cell used, which might play an important role in the efficiency of iSCNT.

Collaboration


Dive into the Kanokwan Srirattana's collaboration.

Top Co-Authors

Avatar

Rangsun Parnpai

Suranaree University of Technology

View shared research outputs
Top Co-Authors

Avatar

Mariena Ketudat-Cairns

Suranaree University of Technology

View shared research outputs
Top Co-Authors

Avatar

Sumeth Imsoonthornruksa

Suranaree University of Technology

View shared research outputs
Top Co-Authors

Avatar

Takashi Nagai

Seoul National University

View shared research outputs
Top Co-Authors

Avatar

C. Laowtammathron

Suranaree University of Technology

View shared research outputs
Top Co-Authors

Avatar

Nucharin Sripunya

Suranaree University of Technology

View shared research outputs
Top Co-Authors

Avatar

Anawat Sangmalee

Suranaree University of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yuanyuan Liang

Suranaree University of Technology

View shared research outputs
Top Co-Authors

Avatar

Keijiro Nirasawa

National Agriculture and Food Research Organization

View shared research outputs
Researchain Logo
Decentralizing Knowledge