Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kaori Kawai is active.

Publication


Featured researches published by Kaori Kawai.


Brain | 2013

Loss of TDP-43 causes age-dependent progressive motor neuron degeneration.

Yohei Iguchi; Masahisa Katsuno; Jun Ichi Niwa; Shinnosuke Takagi; Shinsuke Ishigaki; Kensuke Ikenaka; Kaori Kawai; Hirohisa Watanabe; Koji Yamanaka; Ryosuke Takahashi; Hidemi Misawa; Shoichi Sasaki; Fumiaki Tanaka; Gen Sobue

Amyotrophic lateral sclerosis is a devastating, progressive neurodegenerative disease that affects upper and lower motor neurons. Although several genes are identified as the cause of familial cases, the pathogeneses of sporadic forms, which account for 90% of amyotrophic lateral sclerosis, have not been elucidated. Transactive response DNA-binding protein 43 a nuclear protein regulating RNA processing, redistributes to the cytoplasm and forms aggregates, which are the histopathological hallmark of sporadic amyotrophic lateral sclerosis, in affected motor neurons, suggesting that loss-of-function of transactive response DNA-binding protein 43 is one of the causes of the neurodegeneration. To test this hypothesis, we assessed the effects of knockout of transactive response DNA-binding protein 43 in mouse postnatal motor neurons using Cre/loxp system. These mice developed progressive weight loss and motor impairment around the age of 60 weeks, and exhibited degeneration of large motor axon, grouped atrophy of the skeletal muscle, and denervation in the neuromuscular junction. The spinal motor neurons lacking transactive response DNA-binding protein 43 were not affected for 1 year, but exhibited atrophy at the age of 100 weeks; whereas, extraocular motor neurons, that are essentially resistant in amyotrophic lateral sclerosis, remained preserved even at the age of 100 weeks. Additionally, ultra structural analysis revealed autolysosomes and autophagosomes in the cell bodies and axons of motor neurons of the 100-week-old knockout mice. In summary, the mice in which transactive response DNA-binding protein 43 was knocked-out specifically in postnatal motor neurons exhibited an age-dependent progressive motor dysfunction accompanied by neuropathological alterations, which are common to sporadic amyotrophic lateral sclerosis. These findings suggest that transactive response DNA-binding protein 43 plays an essential role in the long term maintenance of motor neurons and that loss-of-function of this protein seems to contribute to the pathogenesis of amyotrophic lateral sclerosis.


PLOS ONE | 2013

dnc-1/dynactin 1 Knockdown Disrupts Transport of Autophagosomes and Induces Motor Neuron Degeneration

Kensuke Ikenaka; Kaori Kawai; Masahisa Katsuno; Zhe Huang; Yue-Mei Jiang; Yohei Iguchi; Kyogo Kobayashi; Tsubasa Kimata; Masahiro Waza; Fumiaki Tanaka; Ikue Mori; Gen Sobue

Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease characterized by the progressive loss of motor neurons. We previously showed that the expression of dynactin 1, an axon motor protein regulating retrograde transport, is markedly reduced in spinal motor neurons of sporadic ALS patients, although the mechanisms by which decreased dynactin 1 levels cause neurodegeneration have yet to be elucidated. The accumulation of autophagosomes in degenerated motor neurons is another key pathological feature of sporadic ALS. Since autophagosomes are cargo of dynein/dynactin complexes and play a crucial role in the turnover of several organelles and proteins, we hypothesized that the quantitative loss of dynactin 1 disrupts the transport of autophagosomes and induces the degeneration of motor neuron. In the present study, we generated a Caenorhabditis elegans model in which the expression of DNC-1, the homolog of dynactin 1, is specifically knocked down in motor neurons. This model exhibited severe motor defects together with axonal and neuronal degeneration. We also observed impaired movement and increased number of autophagosomes in the degenerated neurons. Furthermore, the combination of rapamycin, an activator of autophagy, and trichostatin which facilitates axonal transport dramatically ameliorated the motor phenotype and axonal degeneration of this model. Thus, our results suggest that decreased expression of dynactin 1 induces motor neuron degeneration and that the transport of autophagosomes is a novel and substantial therapeutic target for motor neuron degeneration.


International Journal of Molecular Sciences | 2012

Disruption of axonal transport in motor neuron diseases.

Kensuke Ikenaka; Masahisa Katsuno; Kaori Kawai; Shinsuke Ishigaki; Fumiaki Tanaka; Gen Sobue

Motor neurons typically have very long axons, and fine-tuning axonal transport is crucial for their survival. The obstruction of axonal transport is gaining attention as a cause of neuronal dysfunction in a variety of neurodegenerative motor neuron diseases. Depletions in dynein and dynactin-1, motor molecules regulating axonal trafficking, disrupt axonal transport in flies, and mutations in their genes cause motor neuron degeneration in humans and rodents. Axonal transport defects are among the early molecular events leading to neurodegeneration in mouse models of amyotrophic lateral sclerosis (ALS). Gene expression profiles indicate that dynactin-1 mRNA is downregulated in degenerating spinal motor neurons of autopsied patients with sporadic ALS. Dynactin-1 mRNA is also reduced in the affected neurons of a mouse model of spinal and bulbar muscular atrophy, a motor neuron disease caused by triplet CAG repeat expansion in the gene encoding the androgen receptor. Pathogenic androgen receptor proteins also inhibit kinesin-1 microtubule-binding activity and disrupt anterograde axonal transport by activating c-Jun N-terminal kinase. Disruption of axonal transport also underlies the pathogenesis of spinal muscular atrophy and hereditary spastic paraplegias. These observations suggest that the impairment of axonal transport is a key event in the pathological processes of motor neuron degeneration and an important target of therapy development for motor neuron diseases.


PLOS ONE | 2012

c-Abl Inhibition Delays Motor Neuron Degeneration in the G93A Mouse, an Animal Model of Amyotrophic Lateral Sclerosis

Ryu Katsumata; Shinsuke Ishigaki; Masahisa Katsuno; Kaori Kawai; Jun Sone; Zhe Huang; Hiroaki Adachi; Fumiaki Tanaka; Fumihiko Urano; Gen Sobue

Background Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease characterized by progressive death of motor neurons. Although the pathogenesis of ALS remains unclear, several cellular processes are known to be involved, including apoptosis. A previous study revealed the apoptosis-related gene c-Abl to be upregulated in sporadic ALS motor neurons. Methodology/Findings We investigated the possibility that c-Abl activation is involved in the progression of ALS and that c-Abl inhibition is potentially a therapeutic strategy for ALS. Using a mouse motor neuron cell line, we found that mutation of Cu/Zn-superoxide dismutase-1 (SOD1), which is one of the causative genes of familial ALS, induced the upregulation of c-Abl and decreased cell viability, and that the c-Abl inhibitor dasatinib inhibited cytotoxicity. Activation of c-Abl with a concomitant increase in activated caspase-3 was observed in the lumbar spine of G93A-SOD1 transgenic mice (G93A mice), a widely used model of ALS. The survival of G93A mice was improved by oral administration of dasatinib, which also decreased c-Abl phosphorylation, inactivated caspase-3, and improved the innervation status of neuromuscular junctions. In addition, c-Abl expression in postmortem spinal cord tissues from sporadic ALS patients was increased by 3-fold compared with non-ALS patients. Conclusions/Significance The present results suggest that c-Abl is a potential therapeutic target for ALS and that the c-Abl inhibitor dasatinib has neuroprotective properties in vitro and in vivo.


Journal of Neuroscience Research | 2010

Dorfin ameliorates phenotypes in a transgenic mouse model of amyotrophic lateral sclerosis.

Jun Sone; Jun-ichi Niwa; Kaori Kawai; Shinsuke Ishigaki; Shin-ichi Yamada; Hiroaki Adachi; Masahisa Katsuno; Fumiaki Tanaka; Manabu Doyu; Gen Sobue

Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease that is characterized by progressive motor neuron degeneration and leads to death within a few years of diagnosis. One of the pathogenic mechanisms of ALS is proposed to be a dysfunction in the protein quality‐control machinery. Dorfin has been identified as a ubiquitin ligase (E3) that recognizes and ubiquitinates mutant SOD1 proteins, thereby accelerating their degradation and reducing their cellular toxicity. We examined the effects of human Dorfin overexpression in G93A mutant SOD1 transgenic mice, a mouse model of familial ALS. In addition to causing a decrease in the amount of mutant SOD1 protein in the spinal cord, Dorfin overexpression ameliorated neurological phenotypes and motor neuron degeneration. Our results indicate that Dorfin overexpression or the activation or induction of E3 may be a therapeutic avenue for mutant SOD1‐associated ALS.


Life Sciences | 2003

Changes in catecholamine metabolism by ascorbic acid deficiency in spontaneously hypertensive rats unable to synthesize ascorbic acid.

Kaori Kawai; Hiroyuki Ito; Hiroko Kubota; Kumiko Takemori; Susumu Makino; Fumihiko Horio

We have previously reported the establishment of a novel rat strain, SHR-od, with both spontaneous hypertension and a defect of ascorbic acid biosynthesis. Blood pressure in mature SHR-od fed an ascorbic acid-supplemented diet is over 190-200 mmHg, while it decreased to around 120 mmHg at 4-5 weeks after the cessation of ascorbic acid supplementation. With regard to possible mechanisms of blood pressure lowering, we focused on catecholamine synthesis in adrenal glands, since catecholamine is a major factor for blood pressure regulation and ascorbic acid is a co-factor of dopamine beta-hydroxylase (DBH) in catecholamine biosynthesis. Male SHR-od (25-week-old) and normotensive ODS rats with a defect in ascorbic acid biosynthesis (25-week-old) were fed a Funabashi-SP diet with or without ascorbic acid (300 mg/kg diet) for 28 days or 35 days. In SHR-od, systolic blood pressure (191 +/- 6 mmHg) began to decrease from day 21 in the ascorbic acid-deficient group, whereas no significant difference was found in ODS rats. In spite of significant lowering of blood pressure, no significant differences were found in catecholamine levels in serum, adrenal glands and brain on day 28. On day 35, however, urinary excretion of norepinephrine and epinephrine in the ascorbic acid-deficient SHR-od were higher at 490% (P < 0.05) and 460% (P < 0.05) of the respective control. Serum catecholamine concentrations and the adrenal catecholamine content tended to be higher in the ascorbic acid-deficient SHR-od than the control of SHR-od and reached to similar level in ODS rats. The administration of ascorbic acid (intraperitoneal injection, 60 mg ascorbic acid/kg body weight, once a day) to the ascorbic acid-deficient SHR-od restored blood pressure to the range 180-190 mmHg within two days. These findings indicate that ascorbic acid deficiency affects catecholamine metabolism in the adrenal glands of SHR-od in response to blood pressure lowering, suggesting catecholamines are not involved in the mechanism for the remarkable reduction in blood pressure in response to ascorbic acid deficiency.


PLOS ONE | 2016

Decreased Peak Expiratory Flow Associated with Muscle Fiber-Type Switching in Spinal and Bulbar Muscular Atrophy

Shinichiro Yamada; Atsushi Hashizume; Yasuhiro Hijikata; Tomonori Inagaki; Keisuke Suzuki; Naohide Kondo; Kaori Kawai; Seiya Noda; Hirotaka Nakanishi; Haruhiko Banno; Akihiro Hirakawa; Haruki Koike; Katherine Halievski; Cynthia L. Jordan; Masahisa Katsuno; Gen Sobue

The aim of this study was to characterize the respiratory function profile of subjects with spinal and bulbar muscular atrophy (SBMA), and to explore the underlying pathological mechanism by comparing the clinical and biochemical indices of this disease with those of amyotrophic lateral sclerosis (ALS). We enrolled male subjects with SBMA (n = 40) and ALS (n = 25) along with 15 healthy control subjects, and assessed their respiratory function, motor function, and muscle strength. Predicted values of peak expiratory flow (%PEF) and forced vital capacity were decreased in subjects with SBMA compared with controls. In SBMA, both values were strongly correlated with the trunk subscores of the motor function tests and showed deterioration relative to disease duration. Compared with activities of daily living (ADL)-matched ALS subjects, %PEF, tongue pressure, and grip power were substantially decreased in subjects with SBMA. Both immunofluorescence and RT-PCR demonstrated a selective decrease in the expression levels of the genes encoding the myosin heavy chains specific to fast-twitch fibers in SBMA subjects. The mRNA levels of peroxisome proliferator-activated receptor gamma coactivator 1-alpha and peroxisome proliferator-activated receptor delta were up-regulated in SBMA compared with ALS and controls. In conclusion, %PEF is a disease-specific respiratory marker for the severity and progression of SBMA. Explosive muscle strength, including %PEF, was selectively affected in subjects with SBMA and was associated with activation of the mitochondrial biogenesis-related molecular pathway in skeletal muscles.


Journal of Toxicology and Environmental Health | 2002

Effects of paraquat on essential antioxidant elements in osteogenic disorder Shionogi rat.

Kayoko Minakata; Osamu Suzuki; Shin-ichi Saito; Kaori Kawai; Fumihiko Horio

This study reports the effect of paraquat (PQ) on concentrations of four elements (Cu, Fe, Mg, Zn) in lung, kidney, spleen, liver, and heart of male osteogenic disorder Shionogi (ODS) rats, a strain not able to synthesize vitamin C. PQ significantly increased the Cu concentrations in lung, liver, and plasma, accompanied by a fall in renal levels. Fe levels were elevated in liver and spleen but lowered in plasma. PQ produced an increase in kidney Mg and a rise in liver Mg and Zn levels. Cardiac elemental levels were not affected by PQ treatment. PQ, a known oxidant, produced changes in tissue elements involved in antioxidant mechanisms.


Brain | 2016

Exosome secretion is a key pathway for clearance of pathological TDP-43

Yohei Iguchi; Lara Eid; Martin Parent; Geneviève Soucy; Christine Bareil; Yuichi Riku; Kaori Kawai; Shinnosuke Takagi; Mari Yoshida; Masahisa Katsuno; Gen Sobue; Jean-Pierre Julien


Journal of Nutritional Science and Vitaminology | 2006

Ascorbic acid deficiency stimulates hepatic expression of inflammatory chemokine, cytokine-induced neutrophil chemoattractant-1, in scurvy-prone ODS rats.

Fumihiko Horio; Keiichiro Kiyama; Misato Kobayashi; Kaori Kawai; Takanori Tsuda

Collaboration


Dive into the Kaori Kawai's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Fumiaki Tanaka

Yokohama City University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge