Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kapil Bharti is active.

Publication


Featured researches published by Kapil Bharti.


Development | 2008

Alternative promoter use in eye development: the complex role and regulation of the transcription factor MITF

Kapil Bharti; Wenfang Liu; Tamas Csermely; Stefano Bertuzzi; Heinz Arnheiter

During vertebrate eye development, the transcription factor MITF plays central roles in neuroepithelial domain specification and differentiation of the retinal pigment epithelium. MITF is not a single protein but represents a family of isoforms generated from a common gene by alternative promoter/exon use. To address the question of the role and regulation of these isoforms, we first determined their expression patterns in developing mouse eyes and analyzed the role of some of them in genetic models. We found that two isoforms, A- and J-Mitf, are present throughout development in both retina and pigment epithelium, whereas H-Mitf is detected preferentially and D-Mitf exclusively in the pigment epithelium. We further found that a genomic deletion encompassing the promoter/exon regions of H-, D- and B-Mitf leads to novel mRNA isoforms and proteins translated from internal start sites. These novel proteins lack the normal, isoform-specific N-terminal sequences and are unable to support the development of the pigment epithelium, but are capable of inducing pigmentation in the ciliary margin and the iris. Moreover, in mutants of the retinal Mitf regulator Chx10 (Vsx2), reduced cell proliferation and abnormal pigmentation of the retina are associated with a preferential upregulation of H- and D-Mitf. This retinal phenotype is corrected when H- and D-Mitf are missing in double Mitf/Chx10 mutants. The results suggest that Mitf regulation in the developing eye is isoform-selective, both temporally and spatially, and that some isoforms, including H- and D-Mitf, are more crucial than others in effecting normal retina and pigment epithelium development.


Pigment Cell & Melanoma Research | 2011

The new paradigm: retinal pigment epithelium cells generated from embryonic or induced pluripotent stem cells

Kapil Bharti; Sheldon S. Miller; Heinz Arnheiter

Compared with neural crest‐derived melanocytes, retinal pigment epithelium (RPE) cells in the back of the eye are pigment cells of a different kind. They are a part of the brain, form an epithelial monolayer, respond to distinct extracellular signals, and provide functions that far exceed those of a light‐absorbing screen. For instance, they control nutrient and metabolite flow to and from the retina, replenish 11‐cis‐retinal by re‐isomerizing all‐trans‐retinal generated during photoconversion, phagocytose daily a portion of the photoreceptors’ outer segments, and secrete cytokines that locally control the innate and adaptive immune systems. Not surprisingly, RPE cell damage is a major cause of human blindness worldwide, with age‐related macular degeneration a prevalent example. RPE replacement therapies using RPE cells generated from embryonic or induced pluripotent stem cells provide a novel approach to a rational treatment of such forms of blindness. In fact, RPE‐like cells can be obtained relatively easily when stem cells are subjected to a two‐step induction protocol, a first step that leads to a neuroectodermal fate and a second to RPE differentiation. Here, we discuss the characteristics of such cells, propose criteria they should fulfill in order to be considered authentic RPE cells, and point out the challenges one faces when using such cells in attempts to restore vision.


Stem Cells Translational Medicine | 2013

Efficient and Rapid Derivation of Primitive Neural Stem Cells and Generation of Brain Subtype Neurons From Human Pluripotent Stem Cells

Yiping Yan; Soojung Shin; Balendu Shekhar Jha; Qiuyue Liu; Jianting Sheng; Fuhai Li; Ming Zhan; Janine Davis; Kapil Bharti; Xianmin Zeng; Mahendra S. Rao; Nasir Malik; Mohan C. Vemuri

Human pluripotent stem cells (hPSCs), including human embryonic stem cells and human induced pluripotent stem cells, are unique cell sources for disease modeling, drug discovery screens, and cell therapy applications. The first step in producing neural lineages from hPSCs is the generation of neural stem cells (NSCs). Current methods of NSC derivation involve the time‐consuming, labor‐intensive steps of an embryoid body generation or coculture with stromal cell lines that result in low‐efficiency derivation of NSCs. In this study, we report a highly efficient serum‐free pluripotent stem cell neural induction medium that can induce hPSCs into primitive NSCs (pNSCs) in 7 days, obviating the need for time‐consuming, laborious embryoid body generation or rosette picking. The pNSCs expressed the neural stem cell markers Pax6, Sox1, Sox2, and Nestin; were negative for Oct4; could be expanded for multiple passages; and could be differentiated into neurons, astrocytes, and oligodendrocytes, in addition to the brain region‐specific neuronal subtypes GABAergic, dopaminergic, and motor neurons. Global gene expression of the transcripts of pNSCs was comparable to that of rosette‐derived and human fetal‐derived NSCs. This work demonstrates an efficient method to generate expandable pNSCs, which can be further differentiated into central nervous system neurons and glia with temporal, spatial, and positional cues of brain regional heterogeneity. This method of pNSC derivation sets the stage for the scalable production of clinically relevant neural cells for cell therapy applications in good manufacturing practice conditions.


PLOS Genetics | 2012

A regulatory loop involving PAX6, MITF, and WNT signaling controls retinal pigment epithelium development.

Kapil Bharti; Melanie Gasper; Jingxing Ou; Martha Brucato; Katharina Clore-Gronenborn; James Pickel; Heinz Arnheiter

The separation of the optic neuroepithelium into future retina and retinal pigment epithelium (RPE) is a critical event in early eye development in vertebrates. Here we show in mice that the transcription factor PAX6, well-known for its retina-promoting activity, also plays a crucial role in early pigment epithelium development. This role is seen, however, only in a background genetically sensitized by mutations in the pigment cell transcription factor MITF. In fact, a reduction in Pax6 gene dose exacerbates the RPE-to-retina transdifferentiation seen in embryos homozygous for an Mitf null allele, and it induces such a transdifferentiation in embryos that are either heterozygous for the Mitf null allele or homozygous for an RPE–specific hypomorphic Mitf allele generated by targeted mutation. Conversely, an increase in Pax6 gene dose interferes with transdifferentiation even in homozygous Mitf null embryos. Gene expression analyses show that, together with MITF or its paralog TFEC, PAX6 suppresses the expression of Fgf15 and Dkk3. Explant culture experiments indicate that a combination of FGF and DKK3 promote retina formation by inhibiting canonical WNT signaling and stimulating the expression of retinogenic genes, including Six6 and Vsx2. Our results demonstrate that in conjunction with Mitf/Tfec Pax6 acts as an anti-retinogenic factor, whereas in conjunction with retinogenic genes it acts as a pro-retinogenic factor. The results suggest that careful manipulation of the Pax6 regulatory circuit may facilitate the generation of retinal and pigment epithelium cells from embryonic or induced pluripotent stem cells.


Proceedings of the National Academy of Sciences of the United States of America | 2009

Expression profiling during ocular development identifies 2 Nlz genes with a critical role in optic fissure closure

Jacob D. Brown; Sunit Dutta; Kapil Bharti; Robert F. Bonner; Peter J. Munson; Igor B. Dawid; Amana L. Akhtar; Ighovie F. Onojafe; Ramakrishna P. Alur; Jeffrey M. Gross; J. Fielding Hejtmancik; Xiaodong Jiao; Wai Yee Chan; Brian P. Brooks

The gene networks underlying closure of the optic fissure during vertebrate eye development are poorly understood. Here, we profile global gene expression during optic fissure closure using laser capture microdissected (LCM) tissue from the margins of the fissure. From these data, we identify a unique role for the C2H2 zinc finger proteins Nlz1 and Nlz2 in normal fissure closure. Gene knockdown of nlz1 and/or nlz2 in zebrafish leads to a failure of the optic fissure to close, a phenotype which closely resembles that seen in human uveal coloboma. We also identify misregulation of pax2 in the developing eye of morphant fish, suggesting that Nlz1 and Nlz2 act upstream of the Pax2 pathway in directing proper closure of the optic fissure.


Development | 2013

Conditional knockdown of DNA methyltransferase 1 reveals a key role of retinal pigment epithelium integrity in photoreceptor outer segment morphogenesis.

Igor O. Nasonkin; Shannath L. Merbs; Kevin Lazo; Verity F. Oliver; Matthew Brooks; Krushangi Patel; Raymond Enke; Jacob Nellissery; Milan Jamrich; Yun Z. Le; Kapil Bharti; Robert N. Fariss; Rivka A. Rachel; Donald J. Zack; Enrique Rodriguez-Boulan; Anand Swaroop

Dysfunction or death of photoreceptors is the primary cause of vision loss in retinal and macular degenerative diseases. As photoreceptors have an intimate relationship with the retinal pigment epithelium (RPE) for exchange of macromolecules, removal of shed membrane discs and retinoid recycling, an improved understanding of the development of the photoreceptor-RPE complex will allow better design of gene- and cell-based therapies. To explore the epigenetic contribution to retinal development we generated conditional knockout alleles of DNA methyltransferase 1 (Dnmt1) in mice. Conditional Dnmt1 knockdown in early eye development mediated by Rx-Cre did not produce lamination or cell fate defects, except in cones; however, the photoreceptors completely lacked outer segments despite near normal expression of phototransduction and cilia genes. We also identified disruption of RPE morphology and polarization as early as E15.5. Defects in outer segment biogenesis were evident with Dnmt1 exon excision only in RPE, but not when excision was directed exclusively to photoreceptors. We detected a reduction in DNA methylation of LINE1 elements (a measure of global DNA methylation) in developing mutant RPE as compared with neural retina, and of Tuba3a, which exhibited dramatically increased expression in mutant retina. These results demonstrate a unique function of DNMT1-mediated DNA methylation in controlling RPE apicobasal polarity and neural retina differentiation. We also establish a model to study the epigenetic mechanisms and signaling pathways that guide the modulation of photoreceptor outer segment morphogenesis by RPE during retinal development and disease.


Stem Cells Translational Medicine | 2014

A Multiplex High-Throughput Gene Expression Assay to Simultaneously Detect Disease and Functional Markers in Induced Pluripotent Stem Cell-Derived Retinal Pigment Epithelium

Marc Ferrer; Barbara Corneo; Janine Davis; Qin Wan; Kiyoharu Miyagishima; Rebecca King; Arvydas Maminishkis; Juan J. Marugan; Ruchi Sharma; Michael Shure; Sally Temple; Sheldon S. Miller; Kapil Bharti

There is continuing interest in the development of lineage‐specific cells from induced pluripotent stem (iPS) cells for use in cell therapies and drug discovery. Although in most cases differentiated cells show features of the desired lineage, they retain fetal gene expression and do not fully mature into “adult‐like” cells. Such cells may not serve as an effective therapy because, once implanted, immature cells pose the risk of uncontrolled growth. Therefore, there is a need to optimize lineage‐specific stem cell differentiation protocols to produce cells that no longer express fetal genes and have attained “adult‐like” phenotypes. Toward that goal, it is critical to develop assays that simultaneously measure cell function and disease markers in high‐throughput format. Here, we use a multiplex high‐throughput gene expression assay that simultaneously detects endogenous expression of multiple developmental, functional, and disease markers in iPS cell‐derived retinal pigment epithelium (RPE). We optimized protocols to differentiate iPS cell‐derived RPE that was then grown in 96‐ and 384‐well plates. As a proof of principle, we demonstrate differential expression of eight genes in iPS cells, iPS cell‐derived RPE at two different differentiation stages, and primary human RPE using this multiplex assay. The data obtained from the multiplex gene expression assay are significantly correlated with standard quantitative reverse transcription‐polymerase chain reaction‐based measurements, confirming the ability of this high‐throughput assay to measure relevant gene expression changes. This assay provides the basis to screen for compounds that improve RPE function and maturation and target disease pathways, thus providing the basis for effective treatments of several retinal degenerative diseases.


PLOS Genetics | 2014

PAX6 Regulates Melanogenesis in the Retinal Pigmented Epithelium through Feed-Forward Regulatory Interactions with MITF

Shaul Raviv; Kapil Bharti; Sigal Rencus-Lazar; Yamit Cohen-Tayar; Rachel Ben-Haroush Schyr; Naveh Evantal; Eran Meshorer; Alona Zilberberg; Maria Idelson; Benjamin E. Reubinoff; Rhonda Grebe; Rina Rosin-Arbesfeld; James D. Lauderdale; Gerard A. Lutty; Heinz Arnheiter; Ruth Ashery-Padan

During organogenesis, PAX6 is required for establishment of various progenitor subtypes within the central nervous system, eye and pancreas. PAX6 expression is maintained in a variety of cell types within each organ, although its role in each lineage and how it acquires cell-specific activity remain elusive. Herein, we aimed to determine the roles and the hierarchical organization of the PAX6-dependent gene regulatory network during the differentiation of the retinal pigmented epithelium (RPE). Somatic mutagenesis of Pax6 in the differentiating RPE revealed that PAX6 functions in a feed-forward regulatory loop with MITF during onset of melanogenesis. PAX6 both controls the expression of an RPE isoform of Mitf and synergizes with MITF to activate expression of genes involved in pigment biogenesis. This study exemplifies how one kernel gene pivotal in organ formation accomplishes a lineage-specific role during terminal differentiation of a single lineage.


Development | 2011

Lack of the ventral anterior homeodomain transcription factor VAX1 leads to induction of a second pituitary

Kapil Bharti; Melanie Gasper; Stefano Bertuzzi; Heinz Arnheiter

The pituitary gland is an endocrine organ that is developmentally derived from a fold in the oral ectoderm and a juxtaposed fold in the neural ectoderm. Here, we show that the absence of Vax1, a homeodomain transcription factor known for its role in eye and optic chiasm development, causes the rostral oral ectoderm to form an ectopic fold that eventually develops into a separate second pituitary with all the pituitary cell types and neuronal fibers characteristic of the normal pituitary. The induction of the second pituitary is associated with a localized ectopic expression of Fgf10, a gene encoding a growth factor known to recruit oral ectodermal cells into the pituitary. Interestingly, there are rare cases of pituitary duplications in humans that are also associated with optic nerve dysplasia, suggesting that VAX1 might be involved in the pathogenesis of this disorder.


Proceedings of the National Academy of Sciences of the United States of America | 2015

Small-molecule–directed, efficient generation of retinal pigment epithelium from human pluripotent stem cells

Julien Maruotti; Srinivas R. Sripathi; Kapil Bharti; John L. Fuller; Karl J. Wahlin; Vinod Ranganathan; Valentin M. Sluch; Cynthia Berlinicke; Janine Davis; Catherine Kim; Lijun Zhao; Jun Wan; Jiang Qian; Barbara Corneo; Sally Temple; Ramin Dubey; Bogdan Olenyuk; Imran Bhutto; Gerard A. Lutty; Donald J. Zack

Significance Cell-based approaches utilizing retinal pigment epithelial (RPE)-like cells derived from human pluripotent stem cells (hPSCs) are being developed for the treatment of retinal degeneration. In most research published to date, the choice of the factors used to induce RPE differentiation is based on data from developmental studies. Here, we developed an unbiased approach directed at identifying novel RPE differentiation-promoting factors using a high-throughput quantitative PCR screen complemented by a novel orthogonal human induced pluripotent stem cell (hiPSC)-based RPE reporter assay. We identified chetomin, a dimeric epidithiodiketopiperazine, as a strong inducer of RPE; combination with nicotinamide resulted in efficient RPE differentiation. Single passage of the whole culture yielded a highly pure hPSC-RPE cell population that displayed many of the morphological, molecular, and functional characteristics of native RPE. Age-related macular degeneration (AMD) is associated with dysfunction and death of retinal pigment epithelial (RPE) cells. Cell-based approaches using RPE-like cells derived from human pluripotent stem cells (hPSCs) are being developed for AMD treatment. However, most efficient RPE differentiation protocols rely on complex, stepwise treatments and addition of growth factors, whereas small-molecule–only approaches developed to date display reduced yields. To identify new compounds that promote RPE differentiation, we developed and performed a high-throughput quantitative PCR screen complemented by a novel orthogonal human induced pluripotent stem cell (hiPSC)-based RPE reporter assay. Chetomin, an inhibitor of hypoxia-inducible factors, was found to strongly increase RPE differentiation; combination with nicotinamide resulted in conversion of over one-half of the differentiating cells into RPE. Single passage of the whole culture yielded a highly pure hPSC-RPE cell population that displayed many of the morphological, molecular, and functional characteristics of native RPE.

Collaboration


Dive into the Kapil Bharti's collaboration.

Top Co-Authors

Avatar

Sheldon S. Miller

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Arvydas Maminishkis

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Qin Wan

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Vladimir Khristov

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Ruchi Sharma

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Balendu Shekhar Jha

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Kiyoharu Miyagishima

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Janine Davis

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Heinz Arnheiter

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Nathan Hotaling

National Institute of Standards and Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge