Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kapil Vaswani is active.

Publication


Featured researches published by Kapil Vaswani.


international conference on software engineering | 2009

HOLMES: Effective statistical debugging via efficient path profiling

Trishul M. Chilimbi; Ben Liblit; Krishna Kumar Mehra; Aditya V. Nori; Kapil Vaswani

Statistical debugging aims to automate the process of isolating bugs by profiling several runs of the program and using statistical analysis to pinpoint the likely causes of failure. In this paper, we investigate the impact of using richer program profiles such as path profiles on the effectiveness of bug isolation. We describe a statistical debugging tool called HOLMES that isolates bugs by finding paths that correlate with failure. We also present an adaptive version of HOLMES that uses iterative, bug-directed profiling to lower execution time and space overheads. We evaluate HOLMES using programs from the SIR benchmark suite and some large, real-world applications. Our results indicate that path profiles can help isolate bugs more precisely by providing more information about the context in which bugs occur. Moreover, bug-directed profiling can efficiently isolate bugs with low overheads, providing a scalable and accurate alternative to sparse random sampling.


high-performance computer architecture | 2006

Construction and use of linear regression models for processor performance analysis

P. J. Joseph; Kapil Vaswani; Matthew J. Thazhuthaveetil

Processor architects have a challenging task of evaluating a large design space consisting of several interacting parameters and optimizations. In order to assist architects in making crucial design decisions, we build linear regression models that relate processor performance to micro-architectural parameters, using simulation based experiments. We obtain good approximate models using an iterative process in which Akaikes information criteria is used to extract a good linear model from a small set of simulations, and limited further simulation is guided by the model using D-optimal experimental designs. The iterative process is repeated until desired error bounds are achieved. We used this procedure to establish the relationship of the CPI performance response to 26 key micro-architectural parameters using a detailed cycle-by-cycle superscalar processor simulator. The resulting models provide a significance ordering on all micro-architectural parameters and their interactions, and explain the performance variations of micro-architectural techniques.


international symposium on microarchitecture | 2006

A Predictive Performance Model for Superscalar Processors

P. J. Joseph; Kapil Vaswani; Matthew J. Thazhuthaveetil

Designing and optimizing high performance microprocessors is an increasingly difficult task due to the size and complexity of the processor design space, high cost of detailed simulation and several constraints that a processor design must satisfy. In this paper, we propose the use of empirical non-linear modeling techniques to assist processor architects in making design decisions and resolving complex trade-offs. We propose a procedure for building accurate non-linear models that consists of the following steps: (i) selection of a small set of representative design points spread across processor design space using latin hypercube sampling, (ii) obtaining performance measures at the selected design points using detailed simulation, (iii) building non-linear models for performance using the function approximation capabilities of radial basis function networks, and (iv) validating the models using an independently and randomly generated set of design points. We evaluate our model building procedure by constructing non-linear performance models for programs from the SPEC CPU2000 benchmark suite with a microarchitectural design space that consists of 9 key parameters. Our results show that the models, built using a relatively small number of simulations, achieve high prediction accuracy (only 2.8% error in CPI estimates on average) across a large processor design space. Our models can potentially replace detailed simulation for common tasks such as the analysis of key microarchitectural trends or searches for optimal processor design points


foundations of software engineering | 2009

Darwin: an approach for debugging evolving programs

Dawei Qi; Abhik Roychoudhury; Zhengkai Liang; Kapil Vaswani

Debugging refers to the laborious process of finding causes of program failures. Often, such failures are introduced when a program undergoes changes and evolves from a stable version to a new, modified version. In this paper, we propose an automated approach for debugging evolving programs. Given two programs (a reference, stable program and a new, modified program) and an input that fails on the modified program, our approach uses concrete as well as symbolic execution to synthesize new inputs that differ marginally from the failing input in their control flow behavior. A comparison of the execution traces of the failing input and the new inputs provides critical clues to the root-cause of the failure. A notable feature of our approach is that it handles hard-to-explain bugs like code missing errors by pointing to the relevant code in the reference program. We have implemented our approach in a tool called DARWIN. We have conducted experiments with several real-life case studies, including real-world web servers and the libPNG library for manipulating PNG images. Our experience from these experiments points to the efficacy of DARWIN in pinpointing bugs. Moreover, while localizing a given observable error, the new inputs synthesized by DARWIN can reveal other undiscovered errors.


programming language design and implementation | 2010

Safe programmable speculative parallelism

Prakash Prabhu; G. Ramalingam; Kapil Vaswani

Execution order constraints imposed by dependences can serialize computation, preventing parallelization of code and algorithms. Speculating on the value(s) carried by dependences is one way to break such critical dependences. Value speculation has been used effectively at a low level, by compilers and hardware. In this paper, we focus on the use of speculation by programmers as an algorithmic paradigm to parallelize seemingly sequential code. We propose two new language constructs, speculative composition and speculative iteration. These constructs enable programmers to declaratively express speculative parallelism in programs: to indicate when and how to speculate, increasing the parallelism in the program, without concerning themselves with mundane implementation details. We present a core language with speculation constructs and mutable state and present a formal operational semantics for the language. We use the semantics to define the notion of a correct speculative execution as one that is equivalent to a non-speculative execution. In general, speculation requires a runtime mechanism to undo the effects of speculative computation in the case of mis predictions. We describe a set of conditions under which such rollback can be avoided. We present a static analysis that checks if a given program satisfies these conditions. This allows us to implement speculation efficiently, without the overhead required for rollbacks. We have implemented the speculation constructs as a C# library, along with the static checker for safety. We present an empirical evaluation of the efficacy of this approach to parallelization.


symposium on principles of programming languages | 2007

Preferential path profiling: compactly numbering interesting paths

Kapil Vaswani; Aditya V. Nori; Trishul M. Chilimbi

Path profiles provide a more accurate characterization of a programs dynamic behavior than basic block or edge profiles, but are relatively more expensive to collect. This has limited their use in practice despite demonstrations of their advantages over edge profiles for a wide variety of applications.We present a new algorithm called preferential path profiling (PPP), that reduces the overhead of path profiling. PPP leverages the observation that most consumers of path profiles are only interested in a subset of all program paths. PPP achieves low overhead by separating interesting paths from other paths and assigning a set of unique and compact numbers to these interesting paths. We draw a parallel between arithmetic coding and path numbering, and use this connection to prove an optimality result for the compactness of path numbering produced by PPP. This compact path numbering enables our PPP implementation to record path information in an array instead of a hash table. Our experimental results indicate that PPP reduces the runtime overhead of profiling paths exercised by the largest (ref) inputs of the SPEC CPU2000 benchmarks from 50% on average (maximum of 132%) to 15% on average (maximum of 26%) as compared to a state-of-the-art path profiler.


architectural support for programming languages and operating systems | 2009

ISOLATOR: dynamically ensuring isolation in comcurrent programs

Sriram K. Rajamani; G. Ramalingam; Venkatesh Prasad Ranganath; Kapil Vaswani

In this paper, we focus on concurrent programs that use locks to achieve isolation of data accessed by critical sections of code. We present ISOLATOR, an algorithm that guarantees isolation for well-behaved threads of a program that obey a locking discipline even in the presence of ill-behaved threads that disobey the locking discipline. ISOLATOR uses code instrumentation, data replication, and virtual memory protection to detect isolation violations and delays ill-behaved threads to ensure isolation. Our instrumentation scheme requires access only to the code of well-behaved threads. We have evaluated ISOLATOR on several benchmark programs and found that ISOLATOR can ensure isolation with reasonable runtime overheads. In addition, we present three general desiderata - safety, isolation, and permissiveness - for any scheme that attempts to ensure isolation, and formally prove that ISOLATOR satisfies all of these desiderata.


computer and communications security | 2015

Moat: Verifying Confidentiality of Enclave Programs

Rohit Sinha; Sriram K. Rajamani; Sanjit A. Seshia; Kapil Vaswani

Security-critical applications constantly face threats from exploits in lower computing layers such as the operating system, virtual machine monitors, or even attacks from malicious administrators. To help protect application secrets from such attacks, there is increasing interest in hardware implementations of primitives for trusted computing, such as Intels Software Guard Extensions (SGX) instructions. These primitives enable hardware protection of memory regions containing code and data, and provide a root of trust for measurement, remote attestation, and cryptographic sealing. However, vulnerabilities in the application itself, such as the incorrect use of SGX instructions or memory safety errors, can be exploited to divulge secrets. In this paper, we introduce a new approach to formally model these primitives and formally verify properties of so-called enclave programs that use them. More specifically, we create formal models of relevant aspects of SGX, develop several adversary models, and present a sound verification methodology (based on automated theorem proving and information flow analysis) for proving that an enclave program running on SGX does not contain a vulnerability that causes it to reveal secrets to the adversary. We introduce Moat, a tool which formally verifies confidentiality properties of applications running on SGX. We evaluate Moat on several applications, including a one time password scheme, off-the-record messaging, notary service, and secure query processing.


symposium on code generation and optimization | 2005

A Programmable Hardware Path Profiler

Kapil Vaswani; Matthew J. Thazhuthaveetil; Y. N. Srikant

For aggressive path-based program optimizations to be profitable in cost-sensitive environments, accurate path profiles must be available at low overheads. In this paper, we propose a low-overhead, non-intrusive hardware path profiling scheme that can be programmed to detect several types of paths including acyclic, intra-procedural paths, paths for a whole program path and extended paths. The profiler consists of a path stack, which detects paths and generates a sequence of path descriptors using branch information from the processor pipeline, and a hot path table that collects a profile of hot paths for later use by a program optimizer. With assistance from the processors event detection logic, our profiler can track a host of architectural metrics along paths, enabling context-sensitive performance monitoring and bottleneck analysis. We illustrate the utility of our scheme by associating paths with a power metric that estimates power consumption in the cache hierarchy caused by instructions along the path. Experiments using programs from the SPEC CPU2000 benchmark suite show that our path profiler, occupying 7KB of hardware real-estate, collects accurate path profiles (average overlap of 88% with a perfect profile) at negligible execution time overheads (0.6% on average).


Science of Computer Programming | 2012

Mining quantified temporal rules: Formalism, algorithms, and evaluation

David Lo; G. Ramalingam; Venkatesh Prasad Ranganath; Kapil Vaswani

Libraries usually impose constraints on how clients should use them. Often these constraints are not well-documented. In this paper, we address the problem of recovering such constraints automatically, a problem referred to as specification mining. Given some client programs that use a given library, we identify constraints on the library usage that are (almost) satisfied by the given set of clients.The class of rules we target for mining combines simple binary temporal operators with state predicates (involving equality constraints) and quantification. This is a simple yet expressive subclass of temporal properties that allows us to capture many common API usage rules. We focus on recovering rules from execution traces and apply classical data mining concepts to be robust against bugs (API usage rule violations) in clients. We present new algorithms for mining rules from execution traces. We show how a propositional rule mining algorithm can be generalized to treat quantification and state predicates in a unified way. Our approach enables the miner to be complete — mine all rules within the targeted class that are satisfied by the given traces — while avoiding an exponential blowup.We have implemented these algorithms and used them to mine API usage rules for several Windows APIs. Our experiments show the efficiency and effectiveness of our approach.

Collaboration


Dive into the Kapil Vaswani's collaboration.

Researchain Logo
Decentralizing Knowledge