Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kar-Chun Tan is active.

Publication


Featured researches published by Kar-Chun Tan.


The Plant Cell | 2007

Dothideomycete–Plant Interactions Illuminated by Genome Sequencing and EST Analysis of the Wheat Pathogen Stagonospora nodorum

James K. Hane; Rohan G. T. Lowe; Peter S. Solomon; Kar-Chun Tan; Conrad L. Schoch; Joseph W. Spatafora; Pedro W. Crous; Chinappa Kodira; Bruce W. Birren; James E. Galagan; Stefano F.F. Torriani; Bruce A. McDonald; Richard P. Oliver

Stagonospora nodorum is a major necrotrophic fungal pathogen of wheat (Triticum aestivum) and a member of the Dothideomycetes, a large fungal taxon that includes many important plant pathogens affecting all major crop plant families. Here, we report the acquisition and initial analysis of a draft genome sequence for this fungus. The assembly comprises 37,164,227 bp of nuclear DNA contained in 107 scaffolds. The circular mitochondrial genome comprises 49,761 bp encoding 46 genes, including four that are intron encoded. The nuclear genome assembly contains 26 classes of repetitive DNA, comprising 4.5% of the genome. Some of the repeats show evidence of repeat-induced point mutations consistent with a frequent sexual cycle. ESTs and gene prediction models support a minimum of 10,762 nuclear genes. Extensive orthology was found between the polyketide synthase family in S. nodorum and Cochliobolus heterostrophus, suggesting an ancient origin and conserved functions for these genes. A striking feature of the gene catalog was the large number of genes predicted to encode secreted proteins; the majority has no meaningful similarity to any other known genes. It is likely that genes for host-specific toxins, in addition to ToxA, will be found among this group. ESTs obtained from axenic mycelium grown on oleate (chosen to mimic early infection) and late-stage lesions sporulating on wheat leaves were obtained. Statistical analysis shows that transcripts encoding proteins involved in protein synthesis and in the production of extracellular proteases, cellulases, and xylanases predominate in the infection library. This suggests that the fungus is dependant on the degradation of wheat macromolecular constituents to provide the carbon skeletons and energy for the synthesis of proteins and other components destined for the developing pycnidiospores.


Molecular Plant Pathology | 2003

The nutrient supply of pathogenic fungi: a fertile field for study

Peter S. Solomon; Kar-Chun Tan; Richard P. Oliver

SUMMARY Phytopathogenic fungi must feed on their hosts to propagate and cause disease. Their ability to access the rich nutrient supply offered by living plants is one of the most obvious properties that distinguish pathogens from saprophytes. Successful invasion by pathogens depends as much on their ability to utilize the available nutrient sources offered by plants as on their ability to penetrate plants and evade defensive mechanisms. Here, we review current knowledge on the nature of the nutrient supplies utilized by pathogens during infection. The available evidence is rudimentary in most cases. There is much evidence to suggest that fungal metabolism can be divided into at least two phases. The first is based on lipolysis and occurs during germination and penetration of the host. The second phase uses glycolysis and predominates during the invasion of host tissue. We also propose, mainly on theoretical grounds, that a third phase of nutrition occurs late in infection during which new spores are produced. Contrary to early assumptions, the nitrogen sources available to some pathogens appear to be abundant. The idea that nitrogen starvation is a cue that controls fungal gene expression during infection may need to be reassessed. Very little is known about the micronutrient (Fe, S, P) or vitamin supply. The knowledge gained from this research may enable the design of new antifungal strategies targeting potential weaknesses in fungal metabolism and will also impact on agronomic practices.


PLOS Pathogens | 2009

SnTox3 Acts in Effector Triggered Susceptibility to Induce Disease on Wheat Carrying the Snn3 Gene

Zhaohui Liu; Justin D. Faris; Richard P. Oliver; Kar-Chun Tan; Peter S. Solomon; Megan C. McDonald; Bruce A. McDonald; Alberto Nuñez; Shunwen Lu; Jack B. Rasmussen; Timothy L. Friesen

The necrotrophic fungus Stagonospora nodorum produces multiple proteinaceous host-selective toxins (HSTs) which act in effector triggered susceptibility. Here, we report the molecular cloning and functional characterization of the SnTox3-encoding gene, designated SnTox3, as well as the initial characterization of the SnTox3 protein. SnTox3 is a 693 bp intron-free gene with little obvious homology to other known genes. The predicted immature SnTox3 protein is 25.8 kDa in size. A 20 amino acid signal sequence as well as a possible pro sequence are predicted. Six cysteine residues are predicted to form disulfide bonds and are shown to be important for SnTox3 activity. Using heterologous expression in Pichia pastoris and transformation into an avirulent S. nodorum isolate, we show that SnTox3 encodes the SnTox3 protein and that SnTox3 interacts with the wheat susceptibility gene Snn3. In addition, the avirulent S. nodorum isolate transformed with SnTox3 was virulent on host lines expressing the Snn3 gene. SnTox3-disrupted mutants were deficient in the production of SnTox3 and avirulent on the Snn3 differential wheat line BG220. An analysis of genetic diversity revealed that SnTox3 is present in 60.1% of a worldwide collection of 923 isolates and occurs as eleven nucleotide haplotypes resulting in four amino acid haplotypes. The cloning of SnTox3 provides a fundamental tool for the investigation of the S. nodorum–wheat interaction, as well as vital information for the general characterization of necrotroph–plant interactions.


Molecular Plant-microbe Interactions | 2004

The disruption of a G-alpha subunit sheds new light on the pathogenicity of Stagonospora nodorum on wheat.

Peter S. Solomon; Kar-Chun Tan; Pedro Sanchez; Richard M. Cooper; Richard P. Oliver

Gna1, a gene encoding a Galpha subunit, a key component of signal transduction pathways, has been cloned and characterized in the wheat pathogen Stagonospora nodorum. Analysis of Gna1 expression during infection revealed a slight decrease in transcript levels shortly after germination, after which levels steadily increased until sporulation. Inactivation of Gna1 had a pleiotropic effect on phenotype. The Gna1 mutants were less pathogenic, attributed to coinciding with a defect in direct penetration. Also, Gna1 mutants were unable to sporulate, showed an albino phenotype, and secreted one or more brown pigments into growth media. Analysis of growth medium identified tyrosine, phenylalanine, and dihydroxyphenylalanine (L-DOPA) were excreted by the Gna1 strains but not by wild type. The presence of these compounds, and the insensitivity of melanization to tricyclazole suggest that S. nodorum synthesizes melanin via the L-DOPA pathway, the first fungal phytopathogen described to do so. Decreases in protease (and several other depolymerases) activities and sensitivity to osmotic stress were other phenotypes identified in the Gna1 mutants. Gna1 is the first signal transduction gene to be cloned and characterized from S. nodorum and its inactivation has uncovered several previously unknown facets of pathogenicity.


Molecular Plant Pathology | 2009

Assessing the impact of transcriptomics, proteomics and metabolomics on fungal phytopathology

Kar-Chun Tan; Simon V. S. Ipcho; Robert D. Trengove; Richard P. Oliver; Peter S. Solomon

SUMMARY Peer-reviewed literature is today littered with exciting new tools and techniques that are being used in all areas of biology and medicine. Transcriptomics, proteomics and, more recently, metabolomics are three of these techniques that have impacted on fungal plant pathology. Used individually, each of these techniques can generate a plethora of data that could occupy a laboratory for years. When used in combination, they have the potential to comprehensively dissect a system at the transcriptional and translational level. Transcriptomics, or quantitative gene expression profiling, is arguably the most familiar to researchers in the field of fungal plant pathology. Microarrays have been the primary technique for the last decade, but others are now emerging. Proteomics has also been exploited by the fungal phytopathogen community, but perhaps not to its potential. A lack of genome sequence information has frustrated proteomics researchers and has largely contributed to this technique not fulfilling its potential. The coming of the genome sequencing era has partially alleviated this problem. Metabolomics is the most recent of these techniques to emerge and is concerned with the non-targeted profiling of all metabolites in a given system. Metabolomics studies on fungal plant pathogens are only just beginning to appear, although its potential to dissect many facets of the pathogen and disease will see its popularity increase quickly. This review assesses the impact of transcriptomics, proteomics and metabolomics on fungal plant pathology over the last decade and discusses their futures. Each of the techniques is described briefly with further reading recommended. Key examples highlighting the application of these technologies to fungal plant pathogens are also reviewed.


Molecular Plant-microbe Interactions | 2005

Mannitol 1-Phosphate Metabolism Is Required for Sporulation in Planta of the Wheat Pathogen Stagonospora nodorum

Peter S. Solomon; Kar-Chun Tan; Richard P. Oliver

An expressed sequence tag encoding a putative mannitol 1-phosphate dehydrogenase (Mpd1) has been characterized from the fungal wheat pathogen Stagonospora nodorum. Mpd1 was disrupted by insertional mutagenesis, and the resulting mpd1 strains lacked all detectable NAD-linked mannitol 1-phosphate dehydrogenase activity (EC 1.1.1.17). The growth rates, sporulation, and spore viability of the mutant strains in vitro were not significantly different from the wild type. The viability of the mpd1 spores when subjected to heat stress was comparable to wild type. Characterization of the sugar alcohol content by nuclear magnetic resonance spectroscopy revealed that, when grown on glucose, the mutant strains contained significantly less mannitol, less arabitol, but more trehalose than the wild-type strains. The mannitol content of fructose-grown cultures was normal. No secreted mannitol could be detected in wild type or mutants. Pathogenicity assays revealed the disruption of Mpd1 did not affect lesion development, however the mutants were unable to sporulate. These results throw new light on the role of mannitol in fungal plant interactions, suggesting a role in metabolic and redox regulation during the critical process of sporulation on senescing leaf material.


Eukaryotic Cell | 2010

The transcription factor stuA regulates central carbon metabolism, mycotoxin production, and effector gene expression in the wheat pathogen Stagonospora nodorum

Simon V. S. Ipcho; Kar-Chun Tan; Geraldine Koh; Joel Gummer; Richard P. Oliver; Robert D. Trengove; Peter S. Solomon

ABSTRACT The Stagonospora nodorum StuA transcription factor gene SnStuA was identified by homology searching in the genome of the wheat pathogen Stagonospora nodorum. Gene expression analysis revealed that SnStuA transcript abundance increased throughout infection and in vitro growth to peak during sporulation. To investigate its role, the gene was deleted by homologous recombination. The growth of the resulting mutants was retarded on glucose compared to the wild-type growth, and the mutants also failed to sporulate. Glutamate as a sole carbon source restored the growth rate defect observed on glucose, although sporulation remained impaired. The SnstuA strains were essentially nonpathogenic, with only minor growth observed around the point of inoculation. The role of SnstuA was investigated using metabolomics, which revealed that this genes product played a key role in regulating central carbon metabolism, with glycolysis, the TCA cycle, and amino acid synthesis all affected in the mutants. SnStuA was also found to positively regulate the synthesis of the mycotoxin alternariol. Gene expression studies on the recently identified effectors in Stagonospora nodorum found that SnStuA was a positive regulator of SnTox3 but was not required for the expression of ToxA. This study has uncovered a multitude of novel regulatory targets of SnStuA and has highlighted the critical role of this gene product in the pathogenicity of Stagonospora nodorum.


Eukaryotic Cell | 2008

A Signaling-Regulated, Short-Chain Dehydrogenase of Stagonospora nodorum Regulates Asexual Development

Kar-Chun Tan; Joshua L. Heazlewood; A. Harvey Millar; G. Thomson; Richard P. Oliver; Peter S. Solomon

ABSTRACT The fungus Stagonospora nodorum is a causal agent of leaf and glume blotch disease of wheat. It has been previously shown that inactivation of heterotrimeric G protein signaling in Stagonospora nodorum caused development defects and reduced pathogenicity [P. S. Solomon et al., Mol. Plant-Microbe Interact. 17:456-466, 2004]. In this study, we sought to identify targets of the signaling pathway that may have contributed to phenotypic defects of the signaling mutants. A comparative analysis of Stagonospora nodorum wild-type and Gα-defective mutant (gna1) intracellular proteomes was performed via two-dimensional polyacrylamide gel electrophoresis. Several proteins showed significantly altered abundances when comparing the two strains. One such protein, the short-chain dehydrogenase Sch1, was 18-fold less abundant in the gna1 strain, implying that it is positively regulated by Gα signaling. Gene expression and transcriptional enhanced green fluorescent protein fusion analyses of Sch1 indicates strong expression during asexual development. Mutant strains of Stagonospora nodorum lacking Sch1 demonstrated poor growth on minimal media and exhibited a significant reduction in asexual sporulation on all growth media examined. Detailed histological experiments on sch1 pycnidia revealed that the gene is required for the differentiation of the subparietal layers of asexual pycnidia resulting in a significant reduction in both pycnidiospore size and numbers.


Functional Plant Biology | 2010

Proteinaceous necrotrophic effectors in fungal virulence.

Kar-Chun Tan; Richard P. Oliver; Peter S. Solomon; Caroline S. Moffat

The host–pathogen interface can be considered as a biological battlefront. Molecules produced by both the pathogen and the host are critical factors determining the outcome of the interaction. Recent studies have revealed that an increasing number of necrotrophic fungal pathogens produce small proteinaceous effectors that are able to function as virulence factors. These molecules can cause tissue death in host plants that possess dominant sensitivity genes, leading to subsequent pathogen colonisation. Such effectors are only found in necrotrophic fungi, yet their roles in virulence are poorly understood. However, several recent key studies of necrotrophic effectors from two wheat (Triticum aestivum L.) pathogens, Pyrenophora tritici-repentis (Died.) Drechs. and Stagonospora nodorum (Berk.) Castell. & Germano, have shed light upon how these effector proteins serve to disable the host from the inside out.


Metabolomics | 2009

Metabolite profiling identifies the mycotoxin alternariol in the pathogen Stagonospora nodorum

Kar-Chun Tan; Robert D. Trengove; Garth L. Maker; Richard P. Oliver; Peter S. Solomon

A recent comparative proteomics study identified the short-chain dehydrogenase (Sch1) as being required for asexual sporulation (Tan et al. Eukaryotic Cell 7:1916–1929, 2008). Metabolite profiling was undertaken on the mutant strains of Stagonospora nodorum lacking the Sch1 gene to help elucidate its role. Gas chromatography-mass spectrometry of the polar metabolites in the Sch1 mutants identified a secondary metabolite at a 200-fold greater concentration than observed in the wild-type strains. Comparative analysis of the secondary metabolite and the mycotoxin alternariol using ESI-MS/MS confirmed the identity of the compound as alternariol. This is the first report to confirm the presence of a mycotoxin in S. nodorum and compelling the field to consider the health implication of this disease.

Collaboration


Dive into the Kar-Chun Tan's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Peter S. Solomon

Australian National University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Timothy L. Friesen

North Dakota State University

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge