Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kar Wey Yong is active.

Publication


Featured researches published by Kar Wey Yong.


Scientific Reports | 2015

Phenotypic and Functional Characterization of Long-Term Cryopreserved Human Adipose-derived Stem Cells

Kar Wey Yong; Belinda Pingguan-Murphy; Feng Xu; Wan Abu Bakar Wan Abas; Jane Ru Choi; Siti Zawiah Omar; Mat Adenan Noor Azmi; Kien Hui Chua; Wan Kamarul Zaman Wan Safwani

Cryopreservation represents an effective technique to maintain the functional properties of human adipose-derived stem cells (ASCs) and allows pooling of cells via long-term storage for clinical applications, e.g., cell-based therapies. It is crucial to reduce freezing injury during the cryopreservation process by loading the ASCs with the optimum concentration of suitable cryoprotective agents (CPAs). In this study, human ASCs were preserved for 3 months in different combinations of CPAs, including 1) 0.25 M trehalose; 2) 5% dimethylsulfoxide (DMSO); 3) 10% DMSO; 4) 5% DMSO + 20% fetal bovine serum (FBS); 5) 10% DMSO + 20% FBS; 6) 10% DMSO + 90% FBS. Interestingly, even with a reduction of DMSO to 5% and without FBS, cryopreserved ASCs maintained high cell viability comparable with standard cryomedium (10% DMSO + 90% FBS), with normal cell phenotype and proliferation rate. Cryopreserved ASCs also maintained their differentiation capability (e.g., to adipocytes, osteocytes and chondrocytes) and showed an enhanced expression level of stemness markers (e.g., NANOG, OCT-4, SOX-2 and REX-1). Our findings suggest that 5% DMSO without FBS may be an ideal CPA for an efficient long-term cryopreservation of human ASCs. These results aid in establishing standardized xeno-free long-term cryopreservation of human ASCs for clinical applications.


PLOS ONE | 2015

In Situ Normoxia Enhances Survival and Proliferation Rate of Human Adipose Tissue-Derived Stromal Cells without Increasing the Risk of Tumourigenesis

Jane Ru Choi; Belinda Pingguan-Murphy; Wan Abu Bakar Wan Abas; Kar Wey Yong; Chi Tat Poon; Mat Adenan Noor Azmi; Siti Zawiah Omar; Kien Hui Chua; Feng Xu; Wan Kamarul Zaman Wan Safwani

Adipose tissue-derived stromal cells (ASCs) natively reside in a relatively low-oxygen tension (i.e., hypoxic) microenvironment in human body. Low oxygen tension (i.e., in situ normoxia), has been known to enhance the growth and survival rate of ASCs, which, however, may lead to the risk of tumourigenesis. Here, we investigated the tumourigenic potential of ASCs under their physiological condition to ensure their safe use in regenerative therapy. Human ASCs isolated from subcutaneous fat were cultured in atmospheric O2 concentration (21% O2) or in situ normoxia (2% O2). We found that ASCs retained their surface markers, tri-lineage differentiation potential, and self-renewal properties under in situ normoxia without altering their morphology. In situ normoxia displayed a higher proliferation and viability of ASCs with less DNA damage as compared to atmospheric O2 concentration. Moreover, low oxygen tension significantly up-regulated VEGF and bFGF mRNA expression and protein secretion while reducing the expression level of tumour suppressor genes p16, p21, p53, and pRb. However, there were no significant differences in ASCs telomere length and their relative telomerase activity when cultured at different oxygen concentrations. Collectively, even with high proliferation and survival rate, ASCs have a low tendency of developing tumour under in situ normoxia. These results suggest 2% O2 as an ideal culture condition for expanding ASCs efficiently while maintaining their characteristics.


American Journal of Physiology-heart and Circulatory Physiology | 2015

Mechanoregulation of cardiac myofibroblast differentiation: implications for cardiac fibrosis and therapy

Kar Wey Yong; Yu Hui Li; Guoyou Huang; Tian Jian Lu; Wan Kamarul Zaman Wan Safwani; Belinda Pingguan-Murphy; Feng Xu

Cardiac myofibroblast differentiation, as one of the most important cellular responses to heart injury, plays a critical role in cardiac remodeling and failure. While biochemical cues for this have been extensively investigated, the role of mechanical cues, e.g., extracellular matrix stiffness and mechanical strain, has also been found to mediate cardiac myofibroblast differentiation. Cardiac fibroblasts in vivo are typically subjected to a specific spatiotemporally changed mechanical microenvironment. When exposed to abnormal mechanical conditions (e.g., increased extracellular matrix stiffness or strain), cardiac fibroblasts can undergo myofibroblast differentiation. To date, the impact of mechanical cues on cardiac myofibroblast differentiation has been studied both in vitro and in vivo. Most of the related in vitro research into this has been mainly undertaken in two-dimensional cell culture systems, although a few three-dimensional studies that exist revealed an important role of dimensionality. However, despite remarkable advances, the comprehensive mechanisms for mechanoregulation of cardiac myofibroblast differentiation remain elusive. In this review, we introduce important parameters for evaluating cardiac myofibroblast differentiation and then discuss the development of both in vitro (two and three dimensional) and in vivo studies on mechanoregulation of cardiac myofibroblast differentiation. An understanding of the development of cardiac myofibroblast differentiation in response to changing mechanical microenvironment will underlie potential targets for future therapy of cardiac fibrosis and failure.


Scientific Reports | 2016

Paracrine Effects of Adipose-Derived Stem Cells on Matrix Stiffness-Induced Cardiac Myofibroblast Differentiation via Angiotensin II Type 1 Receptor and Smad7

Kar Wey Yong; Yuhui Li; Fusheng Liu; Bin Gao; Tian Jian Lu; Wan Abu Bakar Wan Abas; Wan Kamarul Zaman Wan Safwani; Belinda Pingguan-Murphy; Yufei Ma; Feng Xu; Guoyou Huang

Human mesenchymal stem cells (hMSCs) hold great promise in cardiac fibrosis therapy, due to their potential ability of inhibiting cardiac myofibroblast differentiation (a hallmark of cardiac fibrosis). However, the mechanism involved in their effects remains elusive. To explore this, it is necessary to develop an in vitro cardiac fibrosis model that incorporates pore size and native tissue-mimicking matrix stiffness, which may regulate cardiac myofibroblast differentiation. In the present study, collagen coated polyacrylamide hydrogel substrates were fabricated, in which the pore size was adjusted without altering the matrix stiffness. Stiffness is shown to regulate cardiac myofibroblast differentiation independently of pore size. Substrate at a stiffness of 30 kPa, which mimics the stiffness of native fibrotic cardiac tissue, was found to induce cardiac myofibroblast differentiation to create in vitro cardiac fibrosis model. Conditioned medium of hMSCs was applied to the model to determine its role and inhibitory mechanism on cardiac myofibroblast differentiation. It was found that hMSCs secrete hepatocyte growth factor (HGF) to inhibit cardiac myofibroblast differentiation via downregulation of angiotensin II type 1 receptor (AT1R) and upregulation of Smad7. These findings would aid in establishment of the therapeutic use of hMSCs in cardiac fibrosis therapy in future.


Cellular and Molecular Life Sciences | 2017

Effect of hypoxia on human adipose-derived mesenchymal stem cells and its potential clinical applications

Jane Ru Choi; Kar Wey Yong; Wan Kamarul Zaman Wan Safwani

Human adipose-derived mesenchymal stem cells (hASCs) are an ideal cell source for regenerative medicine due to their capabilities of multipotency and the readily accessibility of adipose tissue. They have been found residing in a relatively low oxygen tension microenvironment in the body, but the physiological condition has been overlooked in most studies. In light of the escalating need for culturing hASCs under their physiological condition, this review summarizes the most recent advances in the hypoxia effect on hASCs. We first highlight the advantages of using hASCs in regenerative medicine and discuss the influence of hypoxia on the phenotype and functionality of hASCs in terms of viability, stemness, proliferation, differentiation, soluble factor secretion, and biosafety. We provide a glimpse of the possible cellular mechanism that involved under hypoxia and discuss the potential clinical applications. We then highlight the existing challenges and discuss the future perspective on the use of hypoxic-treated hASCs.


Advanced Healthcare Materials | 2017

Lateral Flow Assay Based on Paper-Hydrogel Hybrid Material for Sensitive Point-of-Care Detection of Dengue Virus.

Jane Ru Choi; Kar Wey Yong; Ruihua Tang; Yan Gong; Ting Wen; Hui Yang; Ang Li; Yook Chin Chia; Belinda Pingguan-Murphy; Feng Xu

Paper-based devices have been broadly used for the point-of-care detection of dengue viral nucleic acids due to their simplicity, cost-effectiveness, and readily observable colorimetric readout. However, their moderate sensitivity and functionality have limited their applications. Despite the above-mentioned advantages, paper substrates are lacking in their ability to control fluid flow, in contrast to the flow control enabled by polymer substrates (e.g., agarose) with readily tunable pore size and porosity. Herein, taking the benefits from both materials, the authors propose a strategy to create a hybrid substrate by incorporating agarose into the test strip to achieve flow control for optimal biomolecule interactions. As compared to the unmodified test strip, this strategy allows sensitive detection of targets with an approximately tenfold signal improvement. Additionally, the authors showcase the potential of functionality improvement by creating multiple test zones for semi-quantification of targets, suggesting that the number of visible test zones is directly proportional to the target concentration. The authors further demonstrate the potential of their proposed strategy for clinical assessment by applying it to their prototype sample-to-result test strip to sensitively and semi-quantitatively detect dengue viral RNA from the clinical blood samples. This proposed strategy holds significant promise for detecting various targets for diverse future applications.


Journal of Tissue Engineering and Regenerative Medicine | 2017

Assessment of tumourigenic potential in long-term cryopreserved human adipose-derived stem cells

Kar Wey Yong; Wan Kamarul Zaman Wan Safwani; Feng Xu; Xiaohui Zhang; Jane Ru Choi; Wan Abu Bakar Wan Abas; Siti Zawiah Omar; Mat Adenan Noor Azmi; Kien Hui Chua; Belinda Pingguan-Murphy

Cryopreservation represents an efficient way to preserve human mesenchymal stem cells (hMSCs) at early culture/passage, and allows pooling of cells to achieve sufficient cells required for off‐the‐shelf use in clinical applications, e.g. cell‐based therapies and regenerative medicine. To fully apply cryopreserved hMSCs in a clinical setting, it is necessary to evaluate their biosafety, e.g. chromosomal abnormality and tumourigenic potential. To date, many studies have demonstrated that cryopreserved hMSCs display no chromosomal abnormalities. However, the tumourigenic potential of cryopreserved hMSCs has not yet been evaluated. In the present study, we cryopreserved human adipose‐derived mesenchymal stem cells (hASCs) for 3 months, using a slow freezing method with various cryoprotective agents (CPAs), followed by assessment of the tumourigenic potential of the cryopreserved hASCs after thawing and subculture. We found that long‐term cryopreserved hASCs maintained normal levels of the tumour suppressor markers p53, p21, p16 and pRb, hTERT, telomerase activity and telomere length. Further, we did not observe significant DNA damage or signs of p53 mutation in cryopreserved hASCs. Our findings suggest that long‐term cryopreserved hASCs are at low risk of tumourigenesis. These findings aid in establishing the biosafety profile of cryopreserved hASCs, and thus establishing low hazardous risk perception with the use of long‐term cryopreserved hASCs for future clinical applications. Copyright


Cryobiology | 2017

Hypoxia enhances the viability, growth and chondrogenic potential of cryopreserved human adipose-derived stem cells

Wan Kamarul Zaman Wan Safwani; Jane Ru Choi; Kar Wey Yong; Iris Ting; Noor Azmi Mat Adenan; Belinda Pingguan-Murphy

Cryopreservation is the only existing method of storage of human adipose-derived stem cells (ASCs) for clinical use. However, cryopreservation has been shown to be detrimental to ASCs, particularly in term of cell viability. To restore the viability of cryopreserved ASCs, it is proposed to culture the cells in a hypoxic condition. To this end, we aim to investigate the effect of hypoxia on the cryopreserved human ASCs in terms of not only cell viability, but also their growth and stemness properties, which have not been explored yet. In this study, human ASCs were cultured under four different conditions: fresh (non-cryopreserved) cells cultured in 1) normoxia (21% O2) and 2) hypoxia (2% O2) and cryopreserved cells cultured in 3) normoxia and 4) hypoxia. ASCs at passage 3 were subjected to assessment of viability, proliferation, differentiation, and expression of stemness markers and hypoxia-inducible factor-1 alpha (HIF-1α). We found that hypoxia enhances the viability and the proliferation rate of cryopreserved ASCs. Further, hypoxia upregulates HIF-1α in cryopreserved ASCs, which in turn activates chondrogenic genes to promote chondrogenic differentiation. In conclusion, hypoxic-preconditioned cryopreserved ASCs could be an ideal cell source for cartilage repair and regeneration.


Scientific Reports | 2016

High-Throughput Non-Contact Vitrification of Cell-Laden Droplets Based on Cell Printing.

Meng Shi; Kai Ling; Kar Wey Yong; Yuhui Li; Shangsheng Feng; Xiaohui Zhang; Belinda Pingguan-Murphy; Tian Jian Lu; Feng Xu

Cryopreservation is the most promising way for long-term storage of biological samples e.g., single cells and cellular structures. Among various cryopreservation methods, vitrification is advantageous by employing high cooling rate to avoid the formation of harmful ice crystals in cells. Most existing vitrification methods adopt direct contact of cells with liquid nitrogen to obtain high cooling rates, which however causes the potential contamination and difficult cell collection. To address these limitations, we developed a non-contact vitrification device based on an ultra-thin freezing film to achieve high cooling/warming rate and avoid direct contact between cells and liquid nitrogen. A high-throughput cell printer was employed to rapidly generate uniform cell-laden microdroplets into the device, where the microdroplets were hung on one side of the film and then vitrified by pouring the liquid nitrogen onto the other side via boiling heat transfer. Through theoretical and experimental studies on vitrification processes, we demonstrated that our device offers a high cooling/warming rate for vitrification of the NIH 3T3 cells and human adipose-derived stem cells (hASCs) with maintained cell viability and differentiation potential. This non-contact vitrification device provides a novel and effective way to cryopreserve cells at high throughput and avoid the contamination and collection problems.


Regenerative Medicine | 2018

Biosafety and bioefficacy assessment of human mesenchymal stem cells: what do we know so far?

Kar Wey Yong; Jane Ru Choi; Asdani Saifullah Dolbashid; Wan Kamarul Zaman Wan Safwani

An outstanding amount of resources has been used in research on manipulation of human stem cells, especially mesenchymal stem cells (MSCs), for various clinical applications. However, human MSCs have not been fully utilized in clinical applications due to restrictions with regard to their certain biosafety and bioefficacy concerns, for example, genetic abnormality, tumor formation, induction of host immune response and failure of homing and engraftment. This review summarizes the biosafety and bioefficacy assessment of human MSCs in terms of genetic stability, tumorigenicity, immunogenicity, homing and engraftment. The strategies used to reduce the biosafety concerns and improve the bioefficacy of human MSCs are highlighted. In addition, the approaches that can be implemented to improve their biosafety and bioefficacy assessment are briefly discussed.

Collaboration


Dive into the Kar Wey Yong's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Feng Xu

Xi'an Jiaotong University

View shared research outputs
Top Co-Authors

Avatar

Jane Ru Choi

Xi'an Jiaotong University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hui Yang

Northwestern Polytechnical University

View shared research outputs
Top Co-Authors

Avatar

Ruihua Tang

Xi'an Jiaotong University

View shared research outputs
Top Co-Authors

Avatar

Tian Jian Lu

Xi'an Jiaotong University

View shared research outputs
Top Co-Authors

Avatar

Xiaohui Zhang

Xi'an Jiaotong University

View shared research outputs
Researchain Logo
Decentralizing Knowledge