Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kara G. Lassen is active.

Publication


Featured researches published by Kara G. Lassen.


Journal of Virology | 2004

Resting CD4+ T Cells from Human Immunodeficiency Virus Type 1 (HIV-1)-Infected Individuals Carry Integrated HIV-1 Genomes within Actively Transcribed Host Genes

Yefei Han; Kara G. Lassen; Daphne Monie; Ahmad R. Sedaghat; Shino Shimoji; Xiao Liu; Theodore C. Pierson; Joseph B. Margolick; Robert F. Siliciano; Janet D. Siliciano

ABSTRACT Resting CD4+ T-cell populations from human immunodeficiency virus type 1 (HIV-1)-infected individuals include cells with integrated HIV-1 DNA. In individuals showing suppression of viremia during highly active antiretroviral therapy (HAART), resting CD4+ T-cell populations do not produce virus without cellular activation. To determine whether the nonproductive nature of the infection in resting CD4+ T cells is due to retroviral integration into chromosomal regions that are repressive for transcription, we used inverse PCR to characterize the HIV-1 integration sites in vivo in resting CD4+ T cells from patients on HAART. Of 74 integration sites from 16 patients, 93% resided within transcription units, usually within introns. Integration was random with respect to transcriptional orientation relative to the host gene and with respect to position within the host gene. Of integration sites within well-characterized genes, 91% (51 of 56) were in genes that were actively expressed in resting CD4+ T cells, as directly demonstrated by reverse transcriptase PCR (RT-PCR). These results predict that HIV-1 sequences may be included in the primary transcripts of host genes as part of rapidly degraded introns. RT-PCR experiments confirmed the presence of HIV-1 sequences within transcripts initiating upstream of the HIV-1 transcription start site. Taken together, these results demonstrate that HIV-1 genomes reside within actively transcribed host genes in resting CD4+ T cells in vivo.


Journal of Virology | 2007

Isolation and Characterization of Replication-Competent Human Immunodeficiency Virus Type 1 from a Subset of Elite Suppressors

Joel N. Blankson; Justin R. Bailey; Seema M. Thayil; Hung-Chih Yang; Kara G. Lassen; Jun Lai; Shiv K. Gandhi; Janet D. Siliciano; Thomas M. Williams; Robert F. Siliciano

ABSTRACT Elite suppressors (ES) are untreated human immunodeficiency virus type 1 (HIV-1)-infected individuals who control viremia to levels below the limit of detection of current assays. The mechanisms involved in this control have not been fully elucidated. Several studies have demonstrated that some ES are infected with defective viruses, but it remains unclear whether others are infected with replication-competent HIV-1. To answer this question, we used a sensitive coculture assay in an attempt to isolate replication-competent virus from a cohort of 10 ES. We successfully cultured six replication-competent isolates from 4 of the 10 ES. The frequency of latently infected cells in these patients was more than a log lower than that seen in patients on highly active antiretroviral therapy with undetectable viral loads. Full-length sequencing of all six isolates revealed no large deletions in any of the genes. A few mutations and small insertions and deletions were found in some isolates, but phenotypic analysis of the affected genes suggested that their function remained intact. Furthermore, all six isolates replicated as well as standard laboratory strains in vitro. The results suggest that some ES are infected with HIV-1 isolates that are fully replication competent and that long-term immunologic control of replication-competent HIV-1 is possible.


Journal of Virology | 2006

Neutralizing Antibodies Do Not Mediate Suppression of Human Immunodeficiency Virus Type 1 in Elite Suppressors or Selection of Plasma Virus Variants in Patients on Highly Active Antiretroviral Therapy

Justin R. Bailey; Kara G. Lassen; Hung-Chih Yang; Thomas C. Quinn; Stuart C. Ray; Joel N. Blankson; Robert F. Siliciano

ABSTRACT Neutralizing antibodies (NAb) against autologous virus can reach high titers in human immunodeficiency virus type 1 (HIV-1)-infected patients with progressive disease. Less is known about the role of NAb in HIV-1-infected patients with viral loads of <50 copies/ml of plasma, including patients on effective highly active antiretroviral therapy (HAART) and elite suppressors, who control HIV-1 replication without antiretroviral therapy. In this study, we analyzed full-length env sequences from plasma viruses and proviruses in resting CD4+ T cells of HAART-treated patients, elite suppressors, and untreated HIV-1-infected patients with progressive disease. For each patient group, we assessed plasma virus neutralization by autologous, contemporaneous plasma. The degree of env diversity, the number of N-linked glycosylation sites, and the lengths of variable loops were all lower in elite suppressors than in HAART-treated and untreated viremic patients. Both elite suppressors and HAART-treated patients had lower titers of NAb against HIV-1 lab strains than those of untreated viremic patients. Surprisingly, titers of NAb against autologous, contemporaneous plasma viruses were similarly low in chronic progressors, elite suppressors, and HAART-treated patients. In elite suppressors and HAART-treated patients, titers of NAb against autologous plasma viruses also did not differ significantly from titers against autologous proviruses from resting CD4+ T cells. These results suggest that high-titer NAb are not required for maintenance of viral suppression in elite suppressors and that NAb do not select plasma virus variants in most HAART-treated patients. Both drug-mediated and natural suppression of HIV-1 replication to levels below 50 copies/ml may limit the stimulation and maintenance of effective NAb responses.


Journal of Virology | 2004

Analysis of Human Immunodeficiency Virus Type 1 Transcriptional Elongation in Resting CD4+ T Cells In Vivo

Kara G. Lassen; Justin R. Bailey; Robert F. Siliciano

ABSTRACT A stable latent reservoir for human immunodeficiency virus type 1 (HIV-1) in resting memory CD4+ T cells presents a barrier to eradication of the infection even in patients on highly active antiretroviral therapy. Potential mechanisms for latency include inaccessibility of the integrated viral genome, absence of key host transcription factors, premature termination of HIV-1 RNAs, and abnormal splicing patterns. To differentiate among these mechanisms, we isolated extremely pure populations of resting CD4+ T cells from patients on highly active antiretroviral therapy. These cells did not produce virus but retained the capacity to do so if appropriately stimulated. Products of HIV-1 transcription were examined in purified resting CD4+ T cells. Although short, prematurely terminated HIV-1 transcripts have been suggested as a marker for latently infected cells, the production of short transcripts had not been previously demonstrated in purified populations of resting CD4+ T cells. By separating RNA into polyadenylated and nonpolyadenylated fractions, we showed that resting CD4+ T cells from patients on highly active antiretroviral therapy produce abortive transcripts that lack a poly(A) tail and that terminate prior to nucleotide 181. Short transcripts dominated the pool of total HIV-1 transcripts in resting CD4+ T cells. Processive, polyadenylated HIV-1 mRNAs were also present at a low level. Both unspliced and multiply spliced forms were found. Taken together, these results show that the nonproductive nature of the infection in resting CD4+ T cells from patients on highly active antiretroviral therapy is not due to absolute blocks at the level of either transcriptional initiation or elongation but rather relative inefficiencies at multiple steps.


PLOS Pathogens | 2011

Activation of HIV Transcription by the Viral Tat Protein Requires a Demethylation Step Mediated by Lysine-specific Demethylase 1 (LSD1/KDM1)

Naoki Sakane; Hye-Sook Kwon; Sara Pagans; Katrin Kaehlcke; Yasuhiro Mizusawa; Masafumi Kamada; Kara G. Lassen; Jonathan Chan; Warner C. Greene; Martina Schnoelzer; Melanie Ott

The essential transactivator function of the HIV Tat protein is regulated by multiple posttranslational modifications. Although individual modifications are well characterized, their crosstalk and dynamics of occurrence during the HIV transcription cycle remain unclear. We examine interactions between two critical modifications within the RNA-binding domain of Tat: monomethylation of lysine 51 (K51) mediated by Set7/9/KMT7, an early event in the Tat transactivation cycle that strengthens the interaction of Tat with TAR RNA, and acetylation of lysine 50 (K50) mediated by p300/KAT3B, a later process that dissociates the complex formed by Tat, TAR RNA and the cyclin T1 subunit of the positive transcription elongation factor b (P-TEFb). We find K51 monomethylation inhibited in synthetic Tat peptides carrying an acetyl group at K50 while acetylation can occur in methylated peptides, albeit at a reduced rate. To examine whether Tat is subject to sequential monomethylation and acetylation in cells, we performed mass spectrometry on immunoprecipitated Tat proteins and generated new modification-specific Tat antibodies against monomethylated/acetylated Tat. No bimodified Tat protein was detected in cells pointing to a demethylation step during the Tat transactivation cycle. We identify lysine-specific demethylase 1 (LSD1/KDM1) as a Tat K51-specific demethylase, which is required for the activation of HIV transcription in latently infected T cells. LSD1/KDM1 and its cofactor CoREST associates with the HIV promoter in vivo and activate Tat transcriptional activity in a K51-dependent manner. In addition, small hairpin RNAs directed against LSD1/KDM1 or inhibition of its activity with the monoamine oxidase inhibitor phenelzine suppresses the activation of HIV transcription in latently infected T cells. Our data support the model that a LSD1/KDM1/CoREST complex, normally known as a transcriptional suppressor, acts as a novel activator of HIV transcription through demethylation of K51 in Tat. Small molecule inhibitors of LSD1/KDM1 show therapeutic promise by enforcing HIV latency in infected T cells.


Journal of Virology | 2009

A Quantitative Affinity-Profiling System That Reveals Distinct CD4/CCR5 Usage Patterns among Human Immunodeficiency Virus Type 1 and Simian Immunodeficiency Virus Strains

Samantha. H. Johnston; Michael A. Lobritz; Sandra Nguyen; Kara G. Lassen; Shirley Delair; Filippo Posta; Yvonne J. Bryson; Eric J. Arts; Tom Chou; Benhur Lee

ABSTRACT The affinity of human immunodeficiency virus (HIV) envelope for CD4 and CCR5 appears to be associated with aspects of R5 virus (virus using the CCR5 coreceptor) pathogenicity. However, entry efficiency results from complex interactions between the viral envelope glycoprotein and both CD4 and CCR5, which limits attempts to correlate viral pathogenicity with surrogate measures of envelope CD4 and CCR5 affinities. Here, we present a system that provides a quantitative and comprehensive characterization of viral entry efficiency as a direct interdependent function of both CD4 and CCR5 levels. This receptor affinity profiling system also revealed heretofore unappreciated complexities underlying CD4/CCR5 usage. We first developed a dually inducible cell line in which CD4 and CCR5 could be simultaneously and independently regulated within a physiologic range of surface expression. Infection by multiple HIV type 1 (HIV-1) and simian immunodeficiency virus isolates could be examined simultaneously for up to 48 different combinations of CD4/CCR5 expression levels, resulting in a distinct usage pattern for each virus. Thus, each virus generated a unique three-dimensional surface plot in which viral infectivity varied as a function of both CD4 and CCR5 expression. From this functional form, we obtained a sensitivity vector along with corresponding metrics that quantified an isolates overall efficiency of CD4/CCR5 usage. When applied to viral isolates with well-characterized sensitivities to entry/fusion inhibitors, the vector metrics were able to encapsulate their known biological phenotypes. The application of the vector metrics also indicated that envelopes derived from elite suppressors had overall-reduced entry efficiencies compared to those of envelopes derived from chronically infected viremic progressors. Our affinity-profiling system may help to refine studies of R5 virus tropism and pathogenesis.


PLOS ONE | 2012

A flexible model of HIV-1 latency permitting evaluation of many primary CD4 T-cell reservoirs.

Kara G. Lassen; Andrew M. Hebbeler; Darshana Bhattacharyya; Michael A. Lobritz; Warner C. Greene

Latently infected cells form the major obstacle to HIV eradication. Studies of HIV latency have been generally hindered by the lack of a robust and rapidly deployable cell model that involves primary human CD4 T lymphocytes. Latently infected cell lines have proven useful, but it is unclear how closely these proliferating cells recapitulate the conditions of viral latency in non-dividing CD4 T lymphocytes in vivo. Current primary lymphocyte models more closely reflect the in vivo state of HIV latency, but they are limited by protracted culture periods and often low cell yields. Additionally, these models are always established in a single latently infected cell type that may not reflect the heterogeneous nature of the latent reservoir. Here we describe a rapid, sensitive, and quantitative primary cell model of HIV-1 latency with replication competent proviruses and multiple reporters to enhance the flexibility of the system. In this model, post-integration HIV-1 latency can be established in all populations of CD4 T cells, and reactivation of latent provirus assessed within 7 days. The kinetics and magnitude of reactivation were evaluated after stimulation with various cytokines, small molecules, and T-cell receptor agonists. Reactivation of latent HIV proviruses was readily detected in the presence of strong activators of NF-κB. Latently infected transitional memory CD4 T cells proved more responsive to these T-cell activators than latently infected central memory cells. These findings reveal potentially important biological differences within the latently infected pool of memory CD4 T cells and describe a flexible primary CD4 T-cell system to evaluate novel antagonists of HIV latency.


Current Opinion in Hiv and Aids | 2011

HIV-1 replicative fitness in elite controllers

Michael A. Lobritz; Kara G. Lassen; Eric J. Arts

Purpose of reviewDifferential rates of disease progression are obviously multifactorial, but the virulence of the actual infecting virus is most frequently ignored as potential source of slow or rapid disease progression. In this review, the argument will be made that nearly all elite suppressors are infected by weak HIV-1 strain (in terms of replicative capacity). Whether this poor virus replication is the cause of elite suppression or the consequence of a strong immune response remains a leading question in the field. Recent findingsAlthough numerous research studies have related HIV-1 replicative capacity/fitness in tissue culture to virulence within patients, this review will focus on several recent and key discoveries on the important role of HIV-1 fitness in elite suppression. First, elite suppressors appear to harbor HIV-1 variants that encode Gag, Pol, and Env proteins that are less efficient than their counterparts of HIV-1 in typical/chronic progressors. Second, the actual HIV-1 clone(s) that establish acute infection may be less fit in patients who become elite controllers as compared with typical progressors. Finally, the fitness costs of cytotoxic T lymphocyte escape in HIV-1 may be easily compensated by secondary mutations if the infecting strain is capable of high replication kinetics and rapid evolution. A strain with weak replicative capacity might not compensate for fitness loss or even generate the initial escape mutations. SummaryA combination of good, anti-HIV-1 host genetics (e.g. HLA-B*57) along with infection by a ‘whimpy’ HIV-1 strain may be necessary for elite suppression, whereas only one of these may lead to slow progression and viremia.


PLOS ONE | 2013

Calcium/Calcineurin Synergizes with Prostratin to Promote NF-κB Dependent Activation of Latent HIV

Jonathan K. Chan; Darshana Bhattacharyya; Kara G. Lassen; Debbie S. Ruelas; Warner C. Greene

Attempts to eradicate HIV have been thwarted by the persistence of a small pool of quiescent memory CD4 T cells that harbor a transcriptionally silent, integrated form of the virus that can produce infectious virions following an anamnestic immune response. Transcription factors downstream of T-cell receptor activation, such as NF-κB/Rel and nuclear factor of activated T cells (NFAT) transcription members, are considered important regulators of HIV transcription during acute HIV infection. We now report studies exploring their precise role as antagonists of HIV latency using cell and primary CD4 T cell models of HIV-1 latency. Surprisingly, RNA interference studies performed in J-Lat CD4 T cells suggested that none of the NFATs, including NFATc1, NFATc2, NFATc3, and NFAT5, played a key role in the reactivation of latent HIV. However, cyclosporin A markedly inhibited the reactivation response. These results were reconciled when calcium signaling through calcineurin was shown to potentiate prostratin induced activation of NF-κB that in turn stimulated the latent HIV long terminal repeat (LTR). Similar effects of calcineurin were confirmed in a primary CD4 T cell model of HIV latency. These findings highlight an important role for calcineurin in NF-κB-dependent induction of latent HIV transcription. Innovative approaches exploiting the synergistic actions of calcineurin and prostratin in the absence of generalized T-cell activation merit exploration as a means to attack the latent viral reservoir.


Journal of Biological Chemistry | 2010

Identification of Two APOBEC3F Splice Variants Displaying HIV-1 Antiviral Activity and Contrasting Sensitivity to Vif

Kara G. Lassen; Silke Wissing; Michael A. Lobritz; Mario L. Santiago; Warner C. Greene

Approximately half of all human genes undergo alternative mRNA splicing. This process often yields homologous gene products exhibiting diverse functions. Alternative splicing of APOBEC3G (A3G) and APOBEC3F (A3F), the major host resistance factors targeted by the HIV-1 protein Vif, has not been explored. We investigated the effects of alternative splicing on A3G/A3F gene expression and antiviral activity. Three alternatively spliced A3G mRNAs and two alternatively spliced A3F mRNAs were detected in peripheral blood mononuclear cells in each of 10 uninfected, healthy donors. Expression of these splice variants was altered in different cell subsets and in response to cellular stimulation. Alternatively spliced A3G variants were insensitive to degradation by Vif but displayed no antiviral activity against HIV-1. Conversely, alternative splicing of A3F produced a 37-kDa variant lacking exon 2 (A3FΔ2) that was prominently expressed in macrophages and monocytes and was resistant to Vif-mediated degradation. Alternative splicing also produced a 24-kDa variant of A3F lacking exons 2–4 (A3FΔ2–4) that was highly sensitive to Vif. Both A3FΔ2 and A3FΔ2–4 displayed reduced cytidine deaminase activity and moderate antiviral activity. These alternatively spliced A3F gene products, particularly A3FΔ2, were incorporated into HIV virions, albeit at levels less than wild-type A3F. Thus, alternative splicing of A3F mRNA generates truncated antiviral proteins that differ sharply in their sensitivity to Vif.

Collaboration


Dive into the Kara G. Lassen's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Michael A. Lobritz

Case Western Reserve University

View shared research outputs
Top Co-Authors

Avatar

Robert F. Siliciano

Johns Hopkins University School of Medicine

View shared research outputs
Top Co-Authors

Avatar

Justin R. Bailey

Johns Hopkins University School of Medicine

View shared research outputs
Top Co-Authors

Avatar

Mario L. Santiago

University of Colorado Denver

View shared research outputs
Top Co-Authors

Avatar

Eric J. Arts

Case Western Reserve University

View shared research outputs
Top Co-Authors

Avatar

Janet D. Siliciano

Johns Hopkins University School of Medicine

View shared research outputs
Top Co-Authors

Avatar

Joel N. Blankson

Johns Hopkins University School of Medicine

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge