Karel De Winter
Ghent University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Karel De Winter.
Protein Engineering Design & Selection | 2011
An Cerdobbel; Karel De Winter; Dirk Aerts; Remko Kuipers; Henk-Jan Joosten; Wim Soetaert; Tom Desmet
Sucrose phosphorylase is a promising biocatalyst for the glycosylation of a wide variety of acceptor molecules, but its low thermostability is a serious drawback for industrial applications. In this work, the stability of the enzyme from Bifidobacterium adolescentis has been significantly improved by a combination of smart and rational mutagenesis. The former consists of substituting the most flexible residues with amino acids that occur more frequently at the corresponding positions in related sequences, while the latter is based on a careful inspection of the enzymes crystal structure to promote electrostatic interactions. In this way, a variant enzyme could be created that contains six mutations and whose half-life at the industrially relevant temperature of 60 °C has more than doubled compared with the wild-type enzyme. An increased stability in the presence of organic co-solvents could also be observed, although these effects were most noticeable at low temperatures.
Journal of Biotechnology | 2010
An Cerdobbel; Tom Desmet; Karel De Winter; Jo Maertens; Wim Soetaert
Sucrose phosphorylase from Bifidobacterium adolescentis was recombinantly expressed in Escherichia coli and purified by use of a His-tag. Kinetic characterization of the enzyme revealed an optimal temperature for phosphorolytic activity of 58°C, which is surprisingly high for an enzyme from a mesophilic source. The temperature optimum could be further increased to 65°C by multipoint covalent immobilization on Sepabeads EC-HFA. The optimal immobilization conditions were determined by surface response design. The highest immobilization yield (72%) was achieved in a phosphate buffer of 0.04 mM at pH 7.2, irrespective of the temperature. The immobilized enzyme was able to retain 65% of its activity after 16 h incubation at 60°C. Furthermore, immobilization of the enzyme in the presence of its substrate sucrose, increased this value to 75%. The obtained biocatalyst should, therefore, be useful for application in carbohydrate conversions at high temperatures, as required by the industry.
Biotechnology Journal | 2010
An Cerdobbel; Karel De Winter; Tom Desmet; Wim Soetaert
Sucrose phosphorylase is an interesting biocatalyst that can glycosylate a variety of small molecules using sucrose as a cheap but efficient donor substrate. The low thermostability of the enzyme, however, limits its industrial applications, as these are preferably performed at 60°C to avoid microbial contamination. Cross-linked enzyme aggregates (CLEAs) of the sucrose phosphorylase from Bifidobacterium adolescentis were found to have a temperature optimum that is 17°C higher than that of the soluble enzyme. Furthermore, the immobilized enzyme displays an exceptional thermostability, retaining all of its activity after 1 week incubation at 60°C. Recycling of the biocatalyst allows its use in at least ten consecutive reactions, which should dramatically increase the commercial potential of its glycosylating activity.
Green Chemistry | 2013
Karel De Winter; Kristien Verlinden; Vladimír Křen; Lenka Weignerová; Wim Soetaert; Tom Desmet
Over the past decade, disaccharide phosphorylases have received increasing attention as promising biocatalysts for glycoside synthesis. Unfortunately, these enzymes typically have a very low affinity for non-carbohydrate acceptors, which urges the addition of cosolvents to increase the dissolved concentration of these acceptors. However, commonly applied solvents such as methanol and dimethyl sulfoxide (DMSO) are not compatible with many intended applications of carbohydrate-derived products. In this work, the solubility of a wide range of relevant acceptors was assessed in the presence of ionic liquids (ILs) as alternative and ‘green’ solvents. The IL AMMOENG 101 was found to be the most effective cosolvent for compounds as diverse as medium- and long-chain alcohols, flavonoids, alkaloids, phenolics and terpenes. Moreover, this IL was shown to be less deleterious to the stability and activity of sucrose phosphorylase than the commonly used dimethyl sulfoxide. To demonstrate the usefulness of this solvent system, a process for the resveratrol glycosylation was established in a buffer containing 20% AMMOENG 101, 1 M sucrose and saturated amounts of the acceptor. A single regioisomer 3-O-α-D-glucopyranosyl-(E)-resveratrol was obtained as proven by NMR spectroscopy.
International Journal of Molecular Sciences | 2012
Karel De Winter; Wim Soetaert; Tom Desmet
The industrial use of sucrose phosphorylase (SP), an interesting biocatalyst for the selective transfer of α-glucosyl residues to various acceptor molecules, has been hampered by a lack of long-term stability and low activity towards alternative substrates. We have recently shown that the stability of the SP from Bifidobacterium adolescentis can be significantly improved by the formation of a cross-linked enzyme aggregate (CLEA). In this work, it is shown that the transglucosylation activity of such a CLEA can also be improved by molecular imprinting with a suitable substrate. To obtain proof of concept, SP was imprinted with α-glucosyl glycerol and subsequently cross-linked with glutaraldehyde. As a consequence, the enzyme’s specific activity towards glycerol as acceptor substrate was increased two-fold while simultaneously providing an exceptional stability at 60 °C. This procedure can be performed in an aqueous environment and gives rise to a new enzyme formulation called iCLEA.
Bioresource Technology | 2013
Karel De Winter; Daniela Šimčíková; Bram Schalck; Lenka Weignerová; Helena Pelantová; Wim Soetaert; Tom Desmet; Vladimír Křen
This study describes an efficient, large scale fermentation of a recombinant α-L-rhamnosidase originating from Aspergillus terreus. High-cell-density Pichia pastoris fermentation resulted in yields up to 627 U/L/h. The recombinant enzyme was used for the reverse rhamnosylation of various small organic compounds. A full factorial experimental design setup was applied to identify the importance of temperature, substrate concentrations, solvent type and concentration as well as the acidity of the reaction mixture. Careful optimization of these parameters allowed the synthesis of a range of α-L-rhamnosides among which cyclohexyl α-L-rhamnopyranoside, anisyl α-L-rhamnopyranoside and 2-phenylethyl α-L-rhamnopyranoside. In addition, α-L-rhamnosylation of phenolic hydroxyls in phenols such as hydroquinone, resorcinol, catechol and phenol was observed, which is a rather unique reaction catalyzed by glycosidases.
Angewandte Chemie | 2015
Mareike E. Dirks‐Hofmeister; Tom Verhaeghe; Karel De Winter; Tom Desmet
Polyphenols display a number of interesting properties but their low solubility limits practical applications. In that respect, glycosylation offers a solution for which sucrose phosphorylase has been proposed as a cost-effective biocatalyst. However, its activity on alternative acceptor substrates is too low for synthetic purposes and typically requires the addition of organic (co-)solvents. Here, we describe the engineering of the enzyme from Thermoanaerobacterium thermosaccharolyticum to enable glycosylation of resveratrol as test case. Based on docking and modeling studies, an active-site loop was predicted to hinder binding. Indeed, the unbolted loop variant R134A showed useful affinity for resveratrol (K(m)=185 mM) and could be used for the quantitative production of resveratrol 3-α-glucoside in an aqueous system. Improved activity was also shown for other acceptors, introducing variant R134A as promising new biocatalyst for glycosylation reactions on bulky phenolic acceptors.
Journal of Agricultural and Food Chemistry | 2017
Koen Beerens; Karel De Winter; Davy Van de Walle; Charlotte Grootaert; Senem Kamiloglu; Lisa Miclotte; Tom Van de Wiele; John Van Camp; Koen Dewettinck; Tom Desmet
Cost-efficient (bio)chemical production processes are essential to evaluate the commercial and industrial applications of promising carbohydrates and also are essential to ensure economically viable production processes. Here, the synthesis of the naturally occurring disaccharide kojibiose (2-O-α-d-glucopyranosyl-d-glucopyranoside) was evaluated using different Bifidobacterium adolescentis sucrose phosphorylase variants. Variant L341I_Q345S was found to efficiently synthesize kojibiose while remaining fully active after 1 week of incubation at 55 °C. Process optimization allowed kojibiose production at the kilogram scale, and simple but efficient downstream processing, using a yeast treatment and crystallization, resulted in more than 3 kg of highly pure crystalline kojibiose (99.8%). These amounts allowed a deeper characterization of its potential in food applications. It was found to have possible beneficial health effects, including delayed glucose release and potential to trigger SCFA production. Finally, we compared the bulk functionality of highly pure kojibiose to that of sucrose, hereby mapping its potential as a new sweetener in confectionery products.
RSC Advances | 2016
Lena Decuyper; Nicola Piens; Jens Mincke; Jeroen Bomon; Bert De Schrijver; Karen Mollet; Karel De Winter; Tom Desmet; Matthias D'hooghe
(3R,4S)-3-Alkoxy/aryloxy-4-(cyanomethyl)azetidin-2-ones were efficiently prepared from readily available 1,2:5,6-di-O-isopropylidene-D-mannitol by means of a classical organic synthesis approach via 4-hydroxymethyl-β-lactams as key intermediates. The corresponding 4-carboxymethyl-β-lactams were subsequently obtained after selective hydrolysis of the nitrile functionality by means of a nitrilase enzyme without affecting the sensitive four-membered ring system, hence overcoming the difficulties associated with the chemical hydrolysis approach. Thus, the implementation of a biocatalytic step allows a convenient synthetic route to new 4-carboxymethyl-β-lactams as versatile building blocks for further elaboration.
Process Biochemistry | 2011
Karel De Winter; An Cerdobbel; Wim Soetaert; Tom Desmet