Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Karel Mokany is active.

Publication


Featured researches published by Karel Mokany.


Frontiers in Ecology and the Environment | 2015

The capacity of refugia for conservation planning under climate change

Gunnar Keppel; Karel Mokany; Grant Wardell-Johnson; Ben L. Phillips; Justin A. Welbergen; April E. Reside

Refugia – areas that may facilitate the persistence of species during large-scale, long-term climatic change –are increasingly important for conservation planning. There are many methods for identifying refugia, but the ability to quantify their potential for facilitating species persistence (ie their “capacity”) remains elusive. We propose a flexible framework for prioritizing future refugia, based on their capacity. This framework can be applied through various modeling approaches and consists of three steps: (1) definition of scope, scale, and resolution; (2) identification and quantification; and (3) prioritization for conservation. Capacity is quantified by multiple indicators, including environmental stability, microclimatic heterogeneity, size, and accessibility of the refugium. Using an integrated, semi-mechanistic modeling technique, we illustrate how this approach can be implemented to identify refugia for the plant diversity of Tasmania, Australia. The highest-capacity climate-change refugia we...


Ecology Letters | 2011

Combining α - and β -diversity models to fill gaps in our knowledge of biodiversity.

Karel Mokany; Tom Harwood; Jacob McC. Overton; Gary M. Barker; Simon Ferrier

For many taxonomic groups, sparse information on the spatial distribution of biodiversity limits our capacity to answer a variety of theoretical and applied ecological questions. Modelling community-level attributes (α- and β-diversity) over space can help overcome this shortfall in our knowledge, yet individually, predictions of α- or β-diversity have their limitations. In this study, we present a novel approach to combining models of α- and β-diversity, with sparse survey data, to predict the community composition for all sites in a region. We applied our new approach to predict land snail community composition across New Zealand. As we demonstrate, these predictions of metacommunity composition have diverse potential applications, including predicting γ-diversity for any set of sites, identifying target areas for conservation reserves, locating priority areas for future ecological surveys, generating realistic compositional data for metacommunity models and simultaneously predicting the distribution of all species in a taxon consistent with known community diversity patterns.


Ecology | 2015

BAAD: a biomass and allometry database for woody plants

Daniel S. Falster; Remko A. Duursma; Masae Iwamoto Ishihara; Diego R. Barneche; Richard G. FitzJohn; Angelica Vårhammar; Masahiro Aiba; Makoto Ando; Niels P. R. Anten; Michael J. Aspinwall; Jennifer L. Baltzer; Christopher Baraloto; Michael Battaglia; John J. Battles; Ben Bond-Lamberty; Michiel van Breugel; James S. Camac; Yves Claveau; Lluís Coll; Masako Dannoura; Sylvain Delagrange; Jean-Christophe Domec; Farrah R. Fatemi; Wang Feng; Veronica Gargaglione; Yoshiaki Goto; Akio Hagihara; Jefferson S. Hall; S. K. Hamilton; Degi Harja

Understanding how plants are constructed—i.e., how key size dimensions and the amount of mass invested in different tissues varies among individuals—is essential for modeling plant growth, carbon stocks, and energy fluxes in the terrestrial biosphere. Allocation patterns can differ through ontogeny, but also among coexisting species and among species adapted to different environments. While a variety of models dealing with biomass allocation exist, we lack a synthetic understanding of the underlying processes. This is partly due to the lack of suitable data sets for validating and parameterizing models. To that end, we present the Biomass And Allometry Database (BAAD) for woody plants. The BAAD contains 259 634 measurements collected in 176 different studies, from 21 084 individuals across 678 species. Most of these data come from existing publications. However, raw data were rarely made public at the time of publication. Thus, the BAAD contains data from different studies, transformed into standard units and variable names. The transformations were achieved using a common workflow for all raw data files. Other features that distinguish the BAAD are: (i) measurements were for individual plants rather than stand averages; (ii) individuals spanning a range of sizes were measured; (iii) plants from 0.01–100 m in height were included; and (iv) biomass was estimated directly, i.e., not indirectly via allometric equations (except in very large trees where biomass was estimated from detailed sub-sampling). We included both wild and artificially grown plants. The data set contains the following size metrics: total leaf area; area of stem cross-section including sapwood, heartwood, and bark; height of plant and crown base, crown area, and surface area; and the dry mass of leaf, stem, branches, sapwood, heartwood, bark, coarse roots, and fine root tissues. We also report other properties of individuals (age, leaf size, leaf mass per area, wood density, nitrogen content of leaves and wood), as well as information about the growing environment (location, light, experimental treatment, vegetation type) where available. It is our hope that making these data available will improve our ability to understand plant growth, ecosystem dynamics, and carbon cycling in the worlds vegetation.


Science | 2007

Comment on "From Plant Traits to Plant Communities: A Statistical Mechanistic Approach to Biodiversity"

Stephen H. Roxburgh; Karel Mokany

Shipley et al. (Reports, 3 November 2006, p. 812) developed a quantitative method for predicting the relative abundance of species from measured traits. We show that the method can have high explanatory power even when all trait and abundance data are randomly and independently generated, because of a mathematical dependence between the observations and predictions. We also suggest a potential solution to this problem.


Journal of Applied Ecology | 2013

Comparing habitat configuration strategies for retaining biodiversity under climate change

Karel Mokany; Tom Harwood; Simon Ferrier

Summary Establishing new conservation reserves is a key management response to promote the persistence of biodiversity under climate change. Although there are many approaches to designing reserves, quantitatively assessing the performance of alternative habitat configuration strategies in retaining biodiversity has been limited by the lack of suitable modelling frameworks. Here, we apply a new dynamic macroecological modelling approach to compare the outcomes under climate change for plant biodiversity in Tasmania (all 2051 species) when new conservation reserves are established according to four contrasting reserve design strategies: connectivity; aggregation; representativeness; and a balanced approach. The most effective reserve design strategy under climate change depended on the specific conservation goal. New reserves focussed on improving representativeness most effectively promoted regional gamma diversity; however, the aggregation and balanced strategies best promoted the mean area of occurrence across all species. As the modelled level of dispersal increased, the connectivity strategy became relatively less effective, and the aggregation strategy relatively more effective in retaining biodiversity. Synthesis and applications. Our results demonstrate that adherence to a single habitat configuration strategy, such as connectivity, is unlikely to result in the best outcomes for biodiversity under climate change. The best reserve design strategy under climate change will vary between regions due to unique combinations of attributes and between taxa due to contrasting dispersal abilities. Quantitative assessments, such as ours, are required to identify configurations that will best retain the biodiversity of each region under climate change.


Animal Production Science | 2010

Optimal management of fertiliser and stocking rate in temperate grazing systems

Karel Mokany; Andrew D. Moore; Phillip Graham; Richard J. Simpson

Phosphorus (P) fertilisers are one of the key tools available for increasing pasture production and the profitability of grazing enterprises. However, recent rapid changes in fertiliser price have increased the importance of developing optimal management strategies for applying P fertiliser and setting stocking rates. We applied a novel combination of process-based grazing systems modelling and randomised cash flow analyses to examine how changes in fertiliser price affect optimal fertiliser application rates and stocking rates for sheep grazing systems in south-eastern Australia, simultaneously taking into account long-term economic viability and environmental sustainability. We used ‘GrassGro’, a grazing systems decision support tool, to simulate three sheep enterprise types (Merino wethers, Merino ewes, crossbred ewes) at two locations (Hamilton, Victoria; Bookham, New South Wales). Gross margins from each year simulated in GrassGro (1966–2007) were randomised 500 times and input to a cash flow analysis that identified the financially optimal stocking rate for a range of fertiliser applications and the financial risk frontiers (combinations of stocking rate and fertiliser input for which the enterprise becomes financially unviable). For all enterprises examined at both locations, the optimal combinations of stocking rate and fertiliser application rate did not vary markedly as fertiliser price changed. Regardless of enterprise type or location, the fertiliser application rate at which the highest gross margins were achieved provided the greatest range of stocking rates that were both financially viable and environmentally sustainable. Increases in fertiliser price reduced the combinations of stocking rate and fertiliser application rate that were viable in the long term, emphasising the importance of well informed grazing management decisions.


PLOS ONE | 2014

Identifying Priority Areas for Conservation and Management in Diverse Tropical Forests

Karel Mokany; David A. Westcott; Soumya Prasad; Andrew J. Ford; Daniel J. Metcalfe

The high concentration of the world’s species in tropical forests endows these systems with particular importance for retaining global biodiversity, yet it also presents significant challenges for ecology and conservation science. The vast number of rare and yet to be discovered species restricts the applicability of species-level modelling for tropical forests, while the capacity of community classification approaches to identify priorities for conservation and management is also limited. Here we assessed the degree to which macroecological modelling can overcome shortfalls in our knowledge of biodiversity in tropical forests and help identify priority areas for their conservation and management. We used 527 plant community survey plots in the Australian Wet Tropics to generate models and predictions of species richness, compositional dissimilarity, and community composition for all the 4,313 vascular plant species recorded across the region (>1.3 million communities (grid cells)). We then applied these predictions to identify areas of tropical forest likely to contain the greatest concentration of species, rare species, endemic species and primitive angiosperm families. Synthesising these alternative attributes of diversity into a single index of conservation value, we identified two areas within the Australian wet tropics that should be a high priority for future conservation actions: the Atherton Tablelands and Daintree rainforest. Our findings demonstrate the value of macroecological modelling in identifying priority areas for conservation and management actions within highly diverse systems, such as tropical forests.


Nature Communications | 2014

Loss of frugivore seed dispersal services under climate change

Karel Mokany; Soumya Prasad; David A. Westcott

The capacity of species to track shifting climates into the future will strongly influence outcomes for biodiversity under a rapidly changing climate. However, we know remarkably little about the dispersal abilities of most species and how these may be influenced by climate change. Here we show that climate change is projected to substantially reduce the seed dispersal services provided by frugivorous vertebrates in rainforests across the Australian Wet Tropics. Our model projections show reductions in both median and long-distance seed dispersal, which may markedly reduce the capacity of many rainforest plant species to track shifts in suitable habitat under climate change. However, our analyses suggest that active management to maintain the abundances of a small set of important frugivores under climate change could markedly reduce the projected loss of seed dispersal services and facilitate shifting distributions of rainforest plant species.


Proceedings of the National Academy of Sciences of the United States of America | 2014

Microclimate is integral to the modeling of plant responses to macroclimate

Tom Harwood; Karel Mokany; Dean R. Paini

It is becoming increasingly evident that microclimate has a large influence on the current distributions of species and their likely responses to climate change (1, 2). De Frenne et al. (3) attempt to highlight the importance of this issue, by assessing how changes in canopy cover have influenced subcanopy microclimates, thereby buffering the responses of understory species to macroclimatic warming over the last 67 y. Here we show that their analysis falls short of actually demonstrating this buffering effect.


Trends in Ecology and Evolution | 2011

Dark diversity: adding the grey.

Karel Mokany; Dean R. Paini

Viewing a problem from a different angle can often provide new insight. Meelis Partel and colleagues recently suggested an interesting and novel way to view the species that are absent from a community; what they call ‘dark diversity’ [1]. The dark diversity for a local community is the pool of species occurring within the region that could inhabit that location but are not currently present. Although it is proposed that this new perspective on missing species can contribute to the understanding and management of natural communities, we point to several important issues that require resolution for the dark diversity concept to be of practical value to ecologists.

Collaboration


Dive into the Karel Mokany's collaboration.

Top Co-Authors

Avatar

Simon Ferrier

Commonwealth Scientific and Industrial Research Organisation

View shared research outputs
Top Co-Authors

Avatar

Tom Harwood

Commonwealth Scientific and Industrial Research Organisation

View shared research outputs
Top Co-Authors

Avatar

Kristen J. Williams

Commonwealth Scientific and Industrial Research Organisation

View shared research outputs
Top Co-Authors

Avatar

Stephen H. Roxburgh

University of New South Wales

View shared research outputs
Top Co-Authors

Avatar

David A. Westcott

Commonwealth Scientific and Industrial Research Organisation

View shared research outputs
Top Co-Authors

Avatar

Dean R. Paini

Commonwealth Scientific and Industrial Research Organisation

View shared research outputs
Top Co-Authors

Avatar

Hugh M. Burley

University of New South Wales

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Helen T. Murphy

Commonwealth Scientific and Industrial Research Organisation

View shared research outputs
Researchain Logo
Decentralizing Knowledge